Chapter II LITERATURE REVIEW
There is a great deal of research on the use
of computers in education. This review is concentrated upon the portion
of that research which deals with (a) problem solving, (b) the use of computers
in mathematics, and (c) the use of computers to provide concrete experience
as an aid to problem solving.
Many teachers, mathematics educators and researchers (Ediger, 1989; Hamm & Adams, 1988; Hatfield & Kieren, 1972; Kinnaman, 1993; Kulik & Kulik, 1987; Roblyer, Castine & King, 1993) have asserted that computers have undeniable value and an important instructional role in mathematics classrooms. others argue that there is no overwhelming evidence of the worth of computers as a learning tool. Cannings and Finkel (1993) explained:
There is some evidence; there are research results; there are anecdotal remarks by myriad teachers; there are hundreds of articles about thousands of studies; there are stories of improved attitude, improved attendance, and "saving" of large numbers of students at risk. But for every positive item you read, you can find a contrarian who has found the opposite effect. (pp. 51-52)For these reasons, research results must be viewed with caution; still, many reports provide progressive evidence that computers are useful educational tools.
The development of problem solving skills is an important objective in today's education. The National Council of Teachers of Mathematics (NCTM), in its Agenda for Action, recommended that "problem solving be the focus of school mathematics in the 1980's" (NCTM 1980, 1). Many attempts were made to teach problem solving skills effectively. A considered amount of research has been done in this area.
Problem solving, viewed as a skill, is a difficult
objective to achieve for students and for teachers to teach. Branca (1980)
presents the idea that considering problem solving as a basic skill can
help teachers and mathematics educators to organize the specifics of daily
teaching of skills, concepts and problem solving.
Recent research demonstrates that to improve students' problem solving
skills, specific concentration must be given to teaching problem solving
strategies. According to LeBlanc, Proudfit, and Putt (1980), "Success in
solving the problem does not depend on the application of specific mathematical
concepts, formulas, or algorithms; rather, the solution requires the use
of one or more strategies" (p. 31). Studies suggest that "students need
to have explicit instructions in how to use strategies, to see examples
of strategies being applied to solve problems, and to have opportunities
to practice problem solving" (Truckson,
1982/3, p.7).
Teachers, researchers, and mathematics educators
have found that students' success at solving problems will
improve if they solve many problems and are encouraged to use general
problem guidelines (Suydam, 1982). George
Polya, whose book, How to Solve It (1985), strongly influenced
mathematics teachers and students of the 1990’s,
claimed that a better understanding of problem solving strategies [known
also as heuristic] "could exert some good
influence on... the teaching of mathematics" (p. 118). Schoenfeld (1980)
claims more: "Under appropriate circumstances, many students can learn
to use heuristics, with the results being a demonstrable improvement in
their problem-solving performance" (p. 9). For Polya (1980):
The first duty of a teacher of mathematics is to use this great opportunity: He should do everything in his power to develop his students' ability to solve problems .... if the teacher helps his students just enough and unobtrusively, leaving them some independence or at least some illusion of independence, they may experience the tension and enjoy the triumph of discovery. (p. 2)Research studies of problem solving have changed in the last three decades. The Kilpatrick (1969) report, a comprehensive review of problem solving research written just prior to the beginning of the 70s, indicates that much of the research and development in problem solving focused on the actual solution to the problems or the answers to the exercises. Kilpatrick (cited in Kantowski, 1981) noted that "Since the solution of a problem--a mathematics problem in particular--is typically a poor index of the processes used to arrive at the solution, problem solving processes must be studied by getting subjects to generate observable sequences of behavior" (p. 111). Research by mathematics educators has examined problem solving processes (Kantowski, 1977; Schoenfeld, 1985b; Smith, 1973). Skill in computational processes is necessary for solving problems (Knifong and Holton, 1976; Meyer, 1978); however, having these skills does not guarantee success in the process of problem solving.
Another change since 1970 has been the development
of the meaning of problem solving. At the beginning, problem solving was
related to verbal or word problems. In these days, when referring to a
problem, it means a "situation demanding resolution for which there is
no immediate or apparent solution" (Wiebe, 1993, p. 13), and problem solving
"is the process of searching for and finding solutions to problems" (Wiebe).
Mathematical problem solving involves mental processes that could be classified
as complex. A 1942 work by Brownell cited in Schoen and Oehmke (1980) said
that a task must be complex if it is to be referred as a problem. In a
more detailed form Schoen and Oehmke defined a problem as:
A task is a problem to a person if--
For this study, the definition of nonroutine and real problems is essential. Those given by Kantowsky (1981) are appropriate for the activities presented in this project:
Several recent studies provide information about the status of solving nonroutine problems. First, at the elementary, secondary, and postsecondary levels most students do not know how to approach such problems and do not appear to use strategies in their solution without specific instruction in techniques for solving nonroutine problems (Lester, 1975; Kantowski, 1974, 1980; Schoenfeld, 1979). Webb (1979) found that conceptual knowledge and heuristic strategy components, among other factors, interact in successful problem solving. For Kantowski (1981) this means that:
It is not simply computational skill and the knowledge of how to apply algorithms that are important in problem solving; it is also important for a student to be able to plan effectively and to use other heuristics such as organizing data into tables and drawing effective diagrams. (p. 115)
One of the best known studies in the area of Real Problems was that of the Unified Science and Mathematics for the Elementary School program (Shann, 1976). In this study, students work together in small groups to solve real problems. The students became involved in activities where computational skills were used in application situations so that the use of the skills became meaningful to them. As a result of the study students spent larger amounts of time in more active, self-directed, and creative behavior. Another finding was that these students had higher means on basic skill tests, and significant positive attitudes toward mathematics.
Gimmestad (1976) studied the processes used by sixty students of a community college in mathematical problem solving. The most popular processes were found to be deduction, trial and error, and equations. The number of processes used by community college students could be increased by instruction in the use of successive approximation, checking, analogy, specialization, generalization, algorithm, reduction-combination, and working backwards. In a similar study with fourth grade students Sanders (1972) found that the most widely-used strategy was Logical Analysis [use of equations or algorithms]. The findings suggested that Blind Guessing should be discouraged as a means of solving arithmetic verbal problems and Trial and Error, unless it is systematic, also should be discouraged. Logical Analysis, which proved to be successful irrespective of the children's intelligence and other characteristics, was strongly recommended. The high degree of accuracy obtained by theHeuristic Training as a Variable
in Problem Solving Performance
Glage's 1980 study of background, attitude and problem solving characteristics of college students whose lowest ACT scores were in mathematics, indicated that poor problem solvers used trial and error frequently and equations infrequently. For the most part, the subjects could read and understand the problem, but were unable to use analytical and mathematical techniques to solve them. Looking Back problem solving behavior was used rarely by subjects in the study. There was some evidence that looking back behavior was related to the student's attitude toward word problems.
In a study conducted by Gliner (1989), he found that college students were involved in activities to find out whether success on relating problems in terms of mathematical structure corresponds to success on solving problems. The study showed that the more successful problem solvers recognized underlying mathematical relationships among the problems and were immediately able to organize the problems based on structural criteria. Less successful problem solvers did not see these underlying structural characteristics and, instead organized the problems based on criteria such as question form, context, and common units of measurements.
A study by Schoenfeld (1985a) is related directly to the present study. Schoenfeld (1982b) studied whether students who received explicit training in the use of particular strategies could use those strategies to solve posttest problems. He also wanted to know if explicit instruction in heuristics makes a difference. Schoenfeld found that problem solving practice is not enough, explicit training is required. The data showed that with explicit instruction about heuristic strategies, students can learn to use them. An interesting detail was that the participants chose the strategies used more often during instruction. For example, for the complex strategy Try to Establish a Subgoal it was not expected that the students would learn enough about it to use it to solve posttest problems; however as a result of working five practice problems, the students learned enough to use it.
An important part of the processes of teaching and learning is evaluation. Teachers are constantly evaluating in several informal or formal ways. With the increase of the attention given to problem solving, there is a need to develop new techniques for evaluating the effectiveness of instruction. However, the complex process of problem solving is more difficult to evaluate. Charles, Lester, and O'Daffer (1987), in the book How to Evaluate Progress in Problem Solving, describe several classroom evaluation techniques and illustrate how these techniques might be used in practice. The techniques mentioned in the book are: observing and Questioning [informal and structured interviews]; Self-Assessment Data [student reports, inventories]; Holistic Scoring [analytic scoring, focused holistic scoring, and general impression scoring]; Multiple-Choice and Completition Tests.Evaluation of Progress in Problem Solving
Marshall (1988) presented an approach that makes a shift from assessment procedures based upon statistical or psychometric model to procedures based upon cognitive models of learning and memory-schema assessment. For Marshall "test development needs to reflect the definition and organization of the knowledge base to be tested." It was recommended that tests' items be constructed to measure declarative [facts and concepts], procedural (skills or techniques], and/or schematic knowledge [relation between declarative facts and procedural rules]. For Marshall,
Once these items are incorporated into a test, we can begin to look at student performance in terms of how much a student knows and in terms of how well the student has organized the information in his or her long-term memory. Having this information about a student, allow us to modify existing instruction and create new instruction with the objective of helping the student to learn more efficiently. (p. 176) Wiebe (1993) provided another explanation of howevaluation should take place when measuring problem solving skills:
Children should be given credit for using correct problem-solving strategies, finding the correct resources, selecting appropriate media (e.g., the computer or calculator), determining whether or not their answer makes sense, partial results, and answers that are reasonably close to the 'true answer'. Also, when true problem solving is taking place, one cannot expect the same level of accuracy as with practice activities-70% or 80% is an unreasonably high expectation. (p. 13)An important source for this project was a second study by Schoenfeld (1985c) where he examined the effects of a college-level course in problem solving. For this purpose, three pairs of tests and associated grading procedures were developed. These instruments were related to the ideas presented by Marshall (1988). Measure 1 consists of a pair of matched tests (pretest and posttest). The tests were compared in terms of solution methods, not by problem type. measure 2 is a qualitative companion to Measure 1. This measure examined the students' subjective assessments of their problem solving behavior. Measure 3 was a test of heuristic transfer. The three measures were used to observe the students' performance before and after problem solving instruction. Schoenfeld explained that most educational research in the area of problem solving was based on extensive protocol analyses, which he considered an incredibly time-consuming task. He added that Measure 1 and Measure 2 provide straightforward and easy-to-gather assessment of heuristic fluency and transfer. The results indicated that student in a problem-solving course can learn to employ a variety of heuristic strategies. There was clear evidence not only of heuristic mastery but also of transfer.
According to Kantowski (1981), teaching problem solving is one of the most difficult tasks facing the teacher at any level. Describing what the curriculum holds for the 80s, and probably for several others decades, she stated reasons for this difficulty:
Kantowski (1981) noted that many of the problems cited above could be resolved partially by computers. Computers can provide support in many problem areas. Students working at a computer can work their own rates. The diversity of possibilities, when using a computer is perhaps the single aspect of this machine that makes it an invaluable tool in teaching problem solving. Kantowsky said that "The capacity of the computer to provide for differences in educational backgrounds and preferred styles enables the teacher to deal effectively with what could otherwise be an unmanageable situation" (p. 123).The Use of Computers in Mathematics
Research studies in the use of the computer in the teaching of mathematics have been reviewed by several authors (Bennet, 1992; DeVault, 1981; Kaput & Thompson, 1994; Kulik & Kulik, 1987). In the review conducted by Kaput and Thompson (1994), two major types of studies were identified. The first type, called "wave-level" studies, were those that used the calculator or the computers as a complement to existing curricula and instruction. Most of the emphasis in these studies was on computation. A second type, called studies at the "swell" level of change, involved a closer look at the role of the technology in the teaching and learning of mathematics, or in cognition (Blume & Schoen, 1988; Heid, 1988: Kraus, 1982; Szetela, 1982; Szetela & Super, 1987; Wheatley, 1980).
Bennet's (1992) review of recent findings included the following suggestion:
Kulik and Kulik (1987) applied Glass's (1976) methodology in four separate meta-analyses (Bandgert-Drowns, Kulik, & Kulik, 1985; Kulik & Kulik, 1986; Kulik, Kulik & Bangert-Drowns, 1985; Kulik, Kulik & Shwalb, 1986). The analyses covered a total of 199 comparative studies: 32 in elementary schools; 42 in high schools; 101 in universities and colleges; and 24 in adult education settings. The meta-analyses examined the use of computers in (a) computer-assisted instruction, or CAI, including drill-and-practice and tutorial instruction; (b) computer-managed instruction, or CMI; and (c) computer-enriched instruction, or CEI, including the use of the computer as a calculating device, programming tool, and simulator. Each of the 199 studies included in the meta-analyses was a controlled, quantitative study that met predefined standards for methodological adequacy. Kulik and Kulik concluded that the major finding from the meta-analyses was that computer-based instruction raised student achievement in many studies. They added that it has given students a new appreciation for technology and has had positive effects on students' attitudes toward schools and teaching. Another benefit found was that computers have helped teachers save instructional time.
Several other studies presented positive results toward the use of computers. These studies have found that computer experience was effective when working with: low-achieving students (Lawson, 1989); graphing abilities (Fredrick, 1989); reflective abstractions (Ayers, Dubinsky & Lewin, 1988); and drill, games and problem solving (Ediger, 1989). In a conference presented at the 1989 annual meeting of the American Educational Research Association, "A Review of Research Issues in the Use of Computer-Related Technologies for Instruction: An Agenda for Research," researchers Williams and Brown (cited in Kinnaman, 1993) drew the following generalizations:
There are other factors that are important in the effectiveness of the use of computers in the teaching and learning processes. one of these factors is the development of instructional activities and strategies for a specific computer program. Nizamudin (1989) found that an intelligent computer aided instruction program, MicroSEARCH, when used with designed instructional strategies improved student performance. The same results were not found when using the program without the designed instructional strategies.Factors Related to the Effectiveness
of Computers Use
The time the students work with computers and the experiences they get also were variables of interest in research studies. DeVault (1981) found that there was consistent evidence to support the claim that achievement gains were related to the amount of time students spend in CAI. Demana and Waits (1992) reported that students must use computers on a regular basis for both in-class and for homework if significant changes are to be made in the mathematics they learn in the 1990s. Wiebe (1993) said that if students are to learn to use a particular program, teachers will have to use computers with problems that could just as easily be solved with other media.
Another factor that can influence problem solving
ability is mathematics anxiety and computer attitudes. Studies of
mathematics anxiety (Castro, 1984; Fenemma & Sherman, 1977; Nolasco,
1988; Sherman, 1979) have shown significant relations between attitudes
toward mathematics and achievement of mathematical skills. Some teachers
fear that the use of computers during instruction may be affected by a
similar anxiety. No empirical research was found, only anecdotal observations
(Fisher, 1984; Schubert & Bakke, 1984). In a study of the effects of
mathematics anxiety and gender on three computer attitudes [computer anxiety,
computer confidence, and computer liking], Gressard and Lloyd (1987) found
that mathematics anxiety may be a small but important factor in the high
computer anxiety and low computer confidence. The results suggested that
"studies of mathematics anxiety may provide insight into computer anxiety,
and techniques that have been successful in the treatment of mathematics
anxiety may also help to relieve computer anxiety" (p. 134).
Most of the current interest in mathematics education is focused on computers and problem solving. Many attempts have been made to use computer programs, programming languages, spreadsheets, graphing software, calculators, and others when working with problem solving. Technology can play a valuable role in developing problem solving and mathematical reasoning skills by freeing the students from tedious computations. As pointed out by Hoeffner, Kendall, Stellenwerf, Thames and Williams (1993), "an electronic spreadsheet can calculate rapidly, generate data from which patterns can be found, show relationships between two or more variables, and investigate 'what if?' questions with ease" p. 51.The Use of Computers to Provide Concrete Experience
as an Aid to Problem Solving
Problem solving research, involving computers, often has dealt with programming languages and spreadsheets. The development of a computer program or a spreadsheet to solve a problem should be a challenging activity that can enhance the students' understanding of the mathematics being used. Wilson, Fernández, and Hadaway (1993) indicated that too often the focus is on programming skills rather on using programming to solve mathematics problems. The same situation could occur with the use of spreadsheets. The focus of teachers who decide to use these tools should be on the mathematics problems and the use of the computer as a tool for problem solving.Programming and Spreadsheets as
Problems Solving Aids
Programming as a problem-solving aid has been discussed
extensively (Blume & Schoen, 1988; Hatfield & Kieren, 1972; McCoy
& Burton, 1988; McCoy & Dodl, 1989; Stannard, 1984) with different
conclusions. Hatfield and Kieren (1972) described a computer program as
a dynamic problem solving tool. McCoy and Burton (1988) from their study
of the
relationship of computer programming and secondary mathematics, found
that "after programming instruction, both ability to use mathematics variables
and mathematical problem solving ability scores were significantly improved"
(p. 165).
McCoy and Dodl (1989) found that experience with computer programming
increased problem solving achievement in mathematics; however, another
finding in that study was that the ability of the students has the greatest
causal effect on mathematical problem solving achievement. The variables,
computer programming, mathematics experience, and gender, each had a moderating
effect. This corresponded to the findings by Lutz, Durham, and Coble (1988)
that successful computers users were much like students successful in any
academic area. They suggested that these might be students who are self-assured,
independent, and intelligent.
Damarin, Dziac, Stull, and Whiteman (1988) suggested
significant increases in students' abilities to solve estimation problems
because of using computer based instructional materials. Stannard (1984)
concluded that the microcomputer has vast potential as a teaching tool
in two critical areas: development of problem solving skills and estimation.
Perhaps even more important is the availability of the computer allowing
teachers to include a variety of realistic problems with large amounts
of data and complex computations. Wiebe (1993) said that the ability to
solve a simple word problem from a textbook has little relationship with
the ability to solve real-word mathematics problems. Arganbright
(1984) pointed out some advantages of spreadsheet use in a mathematics
classroom:
Its operation is easy to learn and requires no previous programming knowledge; it provides a natural way to implement algorithms on a computer that allows for interactive experimentation and modeling; and it furnished an intuitive, concrete means to visualize mathematical algorithms and manipulations. (p. 193)This idea corresponded to that presented by Verderbe (1990), "The spreadsheet will allow us to provide computer