USING INNOVATION DIFFUSION THEORY AND THE TECHNOLOGY ACCEPTANCE MODEL TO EVALUATE THE SECURITY OF WIRELESS MOBILE DEVICES AT A POST-SECONDARY INSTITUTION

by

Héctor L. Feliciano-Torres

JOSÉ M. NIEVES, PhD, Faculty Mentor and Chair

JOHN GRILLO, DBA, Committee Member

DIANE STOTTLEMYER, PhD, Committee Member

Rhonda Capron, PhD, Dean

School of Business and Technology

A Dissertation Presented in Partial Fulfillment Of the Requirements for the Degree

Doctor of Philosophy

Capella University

February 2017
Abstract

The purpose of this quantitative, descriptive non experimental study was to investigate the use of wireless mobile network devices at a post-secondary institution using the innovation diffusion theory (IDT) and technology acceptance model (TAM) as background theories. The researcher intended to explore how students and personnel of the institution use these devices and the possible risks such use involves. The use of mobile devices is a disruptive force capable of compromising student and personnel’s sensitive information in an organization. Target population of this study consisted of 34% of students, 37% of faculty, and 29% of administrative personnel. The study was conducted using the instrument Adding Innovation Diffusion Theory to the Technology Acceptance Model: Supporting Employees' Intentions to use E-Learning Systems created by Lee, Hsieh, and Hsu (2011). The variables used in the study were compatibility, complexity, relative advantages, observability, trialability, perceived usefulness, perceived ease-of-use, and behavioral intention. Findings of the study are intended to provide insight when analyzing users’ acceptance and adoption of mobile devices in wireless systems in an educational setting. Results showed that students, faculty, and administrative personnel perceived the use of mobile devices as appropriate for their learning and working styles, enhancing students’ effectiveness in learning and personnel’s jobs. Therefore, institutions of higher education should take measures in securing corporate data, with safety and productivity in mind. With the incorporation of well-supported mobility and security programs, organizations can strike the right balance between security and usability, and leverage the next generation of consumer technology.
Dedication

I dedicate this dissertation, first to God that has always been with me and have given me the strength to finish this important goal for my live. To my wife Vanessa whom always supported me and was by my side giving me strength to continue this battle. That is why I LOVE YOU with all my heart. To the best friend in the world Dr. Alma Ríos, thanks for all the help you gave me, you never told me NO when I asked for your help. You always gave me the support I needed. A special thanks to Dr. Vilma E. Colón, for your support and collaboration during this journey. To Dr. Marcos Torres Nazario, Dr. Héctor W. Colón Rosa, Dr. Joel Villa, Dr. Ernesto Rosario, and Ginette Collazo, thanks for all your help. To my mother in law Doña Hilda for your dedication, and finally, to my father in law Don Manuel, God have him in heaven.
Acknowledgments

My sincere thanks and appreciation go to my mentor Dr. José M. Nieves; for his exceptional grasp of scholarly and excellence and provided me a constant source of encouragement and guidance.
Table of Contents

Acknowledgments iv
List of Tables viii
List of Figures ix

CHAPTER 1. INTRODUCTION 1
Introduction to the Problem 1
Background of the Study 1
Statement of the Problem 3
Purpose of the Study 3
Rationale 5
Research Questions 6
Significance of the Study 7
Definition of Terms 8
Assumptions and Limitations 9
Nature of the Study 10
Organization of the Remainder of the Study 10

CHAPTER 2. LITERATURE REVIEW 12
Wireless Networks 12
Mobile Devices 25
 What is mobile learning? 28
 Use of mobile devices in higher education 32
 Benefits of the use of mobile devices 34
 Security threats from mobile devices 35
CHAPTER 3. METHODOLOGY

Research Design 47
Sample 49
Method 51
Setting 52
Sampling Strategy 52
Instrumentation and Measures 54
Data Collection 55
Data Analysis 56
Validity and Reliability of Questionnaire by Original Authors 56
Validity and Reliability of Questionnaire for this Study 58
Ethical Considerations 59
Organization of the Remainder of the Study 61

CHAPTER 4. RESULTS

The Measurement Model 65
The Structural Model 69
Model Hypotheses 70
Organization of the Remainder of the Study 72

CHAPTER 5. DISCUSSION, IMPLICATIONS, RECOMMENDATIONS

Statement of the Problem 73
Summary of the Results 74
Discussion of the Results 76
Limitations, Suggestions and Implications 85
Recommendations for Further Study 85
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conclusions</td>
<td>88</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>91</td>
</tr>
<tr>
<td>STATEMENT OF ORIGINAL WORK</td>
<td>105</td>
</tr>
<tr>
<td>APPENDIX A. DEMOGRAPHICS BREAKDOWN</td>
<td>107</td>
</tr>
<tr>
<td>APPENDIX B. HYPOTHESES CONCLUSIONS</td>
<td>109</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1. 2015 Common IEEE 802.11 Standards</td>
<td>15</td>
</tr>
<tr>
<td>Table 2. 2012 Opportunities and Limitations of Mobile Learning (Summary)</td>
<td>31</td>
</tr>
<tr>
<td>Table 3. Correlation Matrix Between Latent Constructs, Cronbach’s Alpha, Composite Reliability (CR) and the Average Variance Extracted (AVE)</td>
<td>66</td>
</tr>
<tr>
<td>Table 4. Outer Loadings and Cross-Loadings for the Indicators of Each Measurement</td>
<td>67</td>
</tr>
<tr>
<td>Table 5. Heterotrait-Monotrait Ratio (HTMT)</td>
<td>68</td>
</tr>
<tr>
<td>Table 6. Hypotheses Testing Results</td>
<td>76</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1. Proposed research model. 4
Figure 2. Sample size calculation. 51
Figure 3. Sample size for a bivariate correlation. Reprinted from G*Power 3.1.9.2 53
Figure 4. One-way ANOVA with correlation. Reprinted from G*Power 3.1.9.2 54
Figure 5. Percent of participants. 62
Figure 6. Faculty and administrative personnel education. 63
Figure 7. Students connecting to wireless networks (minutes). 64
Figure 8. Faculty connecting to wireless networks (minutes). 64
Figure 9. Administrative personnel connecting to wireless networks (minutes). 64
Figure 10. Research’s structural model results. 70
Figure 11. Mobile devices connected to wireless networks enhances effectiveness. 77
Figure 12. Mobile devices connected to wireless networks increase productivity. 78
Figure 13. Mobile devices connected to wireless networks fits participants’ study and working styles. 79
Figure 14. Mobile devices connected to wireless networks was easy. 79
Figure 15. Mobile devices connected to wireless networks improve study or work. 80
Figure 16. Try out various uses of mobile devices before deciding to use them. 81
Figure 17. Try mobile devices outside the campus. 81
Figure 18. Effectiveness for studying or working. 82
CHAPTER 1. INTRODUCTION

Introduction to the Problem

Because of the Internet and the increasing use of mobile devices, wireless technologies have become more important on our personal and professional lives. As long as more technological advances exist, a wireless communication infrastructure becomes more necessary and available for immediate use. Wireless networks give us the convenience of immediate connectivity. However, this benefit comes with some concerns. Accessing valuable information transmitted through the air can bring security issues. Providing security services for wireless networks, in fact, turns out to be quite challenging. Hackers try, and many times succeed, to hack the systems. As stated by Vu (2009) no matter how secure the system is, its adversaries are able to take advantage of security and vulnerabilities matters. The more we do to protect the systems with firewalls and anti-virus, the more hacking tools, worms, and viruses are developed.

Background of the Study

Cisco (2013) mentioned that the use of mobile technology in higher education increased because of the fast adoption of cell phones. Students, faculty, and administration members increasingly use or bring to the universities their mobile devices. Some advantages of using mobile devices are that they can perform a variety of tasks such as making calls, viewing or downloading course materials, teaching class material, checking schedules, finding locations, monitoring machines, updating their social media status, updating information, view notifications, enhance learning experience, assist with research, improve campus operations, and enhance productivity (Cisco, 2013).
Mobile devices permit users to access corporate data from anywhere. In 2013, people purchased 1.2 billion mobile devices as the most common method for accessing Internet, exceeding purchases of personal computers. Many of these devices are used for personal activities and for work-related activities (Patten & Harris, 2013).

At the institution where the research was performed, faculty, students and administrators are authorized to take their own mobile devices and to connect through the wireless network to access the Internet. There are 331 administrative members, 389 faculty members and 9,380 students who have access to the university’s wireless network. The organization’s wireless Internet access has a range of 500 IP address available for this purpose. Access can be done in a daily basis, even though the system will clear users’ access after three days (G. Ocasio, personal communication, May 1, 2016). Each user will be able to access the wireless network from more than one mobile device simultaneously. Therefore, the users can connect to the Internet through the wireless network with their mobile devices and keep the assigned IP address for three consecutive days, even though they do not use it. This creates a constant use of network traffic because the system does not eliminate automatically the assigned address by the dynamic host configuration protocol (DHCP). The DHCP assignment has to be eliminated manually from the device using the IP address and the IP assigned to it. In fact, hackers often target universities during the academic year, and campuses are not equipped to handle the cybersecurity threats (Thompson, 2014). According to Cisco (n.d.a.), a college campus averages from 40 to 50 hacks a day during back-to-school season.
Statement of the Problem

New generations of mobile devices connect daily to the wireless network. This produces an increase in risks and security challenges resulting in more information transmitted through the application and consequently an increase of risk in personal safety. Threats to security information technology are growing, affecting adversely companies and institutions around the world.

The researcher of this study explored the use of mobile devices such as smartphones and tablets, at a post-secondary institution. By using the innovation diffusion theory (IDT) and technology acceptance model (TAM) as a background theory, the researcher intended to explore what uses participants gave to these devices using the wireless network of the educational institution, and the risks it involves. This issue is very relevant for the Information Technology (IT) field because it is necessary to promote and provide security in wireless networks due to the continuous evolution of mobile devices and its use in different fields. According to Adams (2007), almost everyone now has a duty to mitigate risks. We have the duty of protecting our environment, live, family, work, and property to reduce consistently the potential risk and magnitude of damage they can cause. It is important to reduce adverse effects that our conduct can cause on other properties, including were people study and work.

Purpose of the Study

The purpose of the researcher was to investigate the use of mobile devices connected through a wireless network at a post-secondary institution using IDT and TAM as a background theory. The proposed research model, as shown in the Figure 1, illustrate the correlation between IDT and TAM. The researcher aimed to identify how both
theories correlate, identify possible treats to a higher education institution’s network system when using mobiles devices connected to wireless networks, and possibly come out with strategies to mitigate risks. As stated by the University of Massachusetts (2016), access to institution’s wireless network presents significant risks to the network, the integrity, and reliability of institution’s data maintained on or served from university information systems. Research, financial, instructional, personal, operational, and other sensitive data are targeted by hackers when trying to enter and access the institutions’ systems.

According to Buchanan (2011), information and communication technologies are increasingly being used in education environments. Many governments are emphasizing that turning out technologically and digitally literate able graduates, whom are employable in the global information economy, is of great importance nowadays. Schmidt (2006) indicated that mobile learning, or m-learning, is one of the fastest growing areas in the communication and information technologies field in the education
environment. Both cover any form of learning that is facilitated through a mobile handheld device. These devices include digital media players, smartphones, personal digital assistants, and tablets.

One of the most significant benefits of using these devices is the ability to communicate (Choi, Robles, Hong & Kim, 2008). According to Schmidt (2006), the use of these devices also brings new security threats and alters that risk profile of security for information systems in the organization. Risk assessment of threats associated with wireless monitoring should be done in order to set and develop a plan to mitigate identified threats. The implementation of technological solutions is one way to counter wireless security threats and vulnerabilities; making this an important issue. Another way to help IT managers to counter threats linked to the use of wireless technology is evaluating the institution’s framework with the results of the questionnaire given to students and faculty.

Rationale

According to the National Institute of Standards and Technology (n.d.), implementation of wireless communication networks and use of wireless devices is increasing. New developments present new security risks and it is imperative that critical assets remain protected. Companies should protect the confidentiality, integrity, and availability of all their systems and information. Data broadcasting using radio frequencies, immature technology, flawed implementations, limited user awareness, incomplete security standards and lack administrative and security practices are unique challenges for companies with a wireless environment. Organizations, institutions, and individuals benefit when devices and wireless networks are protected. Risks should be
reduced by applying countermeasures, such as; management, operational, and technical controls, to address threats, and vulnerabilities.

Research Questions

The following are the research questions for this proposed study:

RQ1. How does Compatibility (CPA) relate with the Perceived Usefulness (PU), Perceived Ease-of-Use (PEU) and Behavioral Intention (BI) reported by the educational community of an Institution of Higher Education (IHE) who uses mobile devices connected through the IHE wireless network?

RQ2. How does Complexity (CPL) relate with the Perceived Usefulness (PU), Perceived Ease-of-Use (PEU) and Behavioral Intention (BI) reported by the educational community of an Institution of Higher Education (IHE) who uses mobile devices connected through the IHE wireless network?

RQ3. How does Relative Advantages (ADV) relate with the Perceived Usefulness (PU), Perceived Ease-of-Use (PEU) and Behavioral Intention (BI) reported by the educational community of an Institution of Higher Education (IHE) who uses mobile devices connected through the IHE wireless network?

RQ4. How does Observability (OBS) relate with the Perceived Usefulness (PU), Perceived Ease-of-Use (PEU) and Behavioral Intention (BI) reported by the educational community of an Institution of Higher Education (IHE) who uses mobile devices connected through the IHE wireless network?

RQ5. How does Trialability (TRI) relate with the Perceived Usefulness (PU), Perceived Ease-of-Use (PEU) and Behavioral Intention (BI) reported by the
educational community of an Institution of Higher Education (IHE) who uses mobile devices connected through the IHE wireless network?

Significance of the Study

Choi et al. (2008) indicated that wireless technology also creates threats and alters the companies’ security in existing information. With all the benefits that wireless networking provides, it also has its limitations because of new security threats that alter the organization’s complete information security risk profile. As stated by Ho, Lai, Chen, Wang, & Tai (2012), detection of malicious traffic has been an active subject for network security during the last several years. Denial of service, propagation of viruses, worms, sophisticated attacks, malware Trojan horses, botnets, and spyware are some examples of malicious traffic that make network performance inefficient and have made organizations, institutions, and individuals’ efforts unsuccessfully to fully protect networks and computer systems.

The use of mobile devices connected to the campus wireless networks is a disruptive force capable of obtaining sensitive information of students and the organization. Schmidt (2006) indicated that campus administrators are pressured to implement wireless networks on the campus, responding to student and faculty demands, but many times important security concerns may be overlooked. Given the significance of security concerns, it is important to increase knowledge and understanding of security concerns and threats. In order to provide a secure computing environment for students and faculty, network administrators and university officials need to be aware of security threats occurring at their campuses. If the institution and its personnel understand what
the risks are involving in the use of mobile devices at the camps, network managers will be able to address security issues.

Through this study, the researcher investigated the uses of mobile devices connected to the wireless network of a post-secondary institution of higher education that can result in new security issues and limitations. The results may be of great importance to higher education administrators, IT directors, and policy makers of IHE.

Definition of Terms

The following terms are important to this study:

- **Behavioral intention (BI)** - “the degree to which a person believes in using a particular system to perform a specified conduct” (Davis, 1989, p.323).

- **Compatibility** - “the degree to which innovation is regarded as being consistent with the actual values, experiences and needs” (Rogers, 1995, p.15).

- **Complexity** - “perceive the level of difficult in understanding innovations and use” (Rogers, 1995, p.16).

- **Observability** - “the degree to which the results of innovation is visible to others” (Rogers, 1995, p.16).

- **Perceived ease-of-use (PEU)** - "the degree to which a person believes that using a particular system would be free from effort" (Davis, 1989, p.320).

- **Perceived usefulness (PU)** - "the degree to which a person believes that using a particular system would enhance his or her job performance" (Davis, 1989, p.319).
• Relative advantage - “the degree to which an innovation is considered as being better than the idea it replaced” (Rogers, 1995, p.15).

• Trialability - “the degree to which an innovation may be conducted on a limited basis” (Rogers, 1995, p.16).

Assumptions and Limitations

For this research, some assumptions are taken under consideration as well as some limitations. First, technology access is significant for the population. This is seen in homes, businesses, and college campuses, because it provides a high level of convenience to users as they move from location to location (Schmidt, 2006). However, according to Crowley (2009), the study of information systems security, unlike more mature disciplines such as computer science, has not yet established a generally accepted body of knowledge. This is partly due to the ever-changing kind of threats in this emerging field.

Second, it is assumed that the sample selected is representative of the population under study. Holton and Burnett (1997) stated that “one of the real advantages of quantitative methods is their ability to use smaller groups of people to make inferences about larger groups that would be prohibitively expensive to study” (p.72). Some limitations identified that may affect the research are: (a) the limited number of participants, as they represent a previously selected group, (b) the availability of participants to answer the questionnaire, (c) how accurately it is representative the sample versus the global population; and (d) the few investigations on the subject of possible threats caused by mobile devices connected to wireless networks.
Nature of the Study

The theoretical framework used was composed of the technology acceptance model (TAM) by Davis (1989) and the innovation diffusion theory (IDT). These are similar in some constructs and complement each other to examine the adoption of technology (Rogers, 1995). Similarities between both theories are relative advantages and complexity, and perceived ease of use and perceived usefulness (USA Information Resources Management Association, 2012). The (TAM) model was described as an information system theory where users come to accept and use a technology. The model suggests that when users are presented with a new technology, a number of factors influence their decision about adoption and acceptance.

According to Lee et al. (2011), TAM is an excellent model to explain IS/IT acceptance. These authors also endorse integrating TAM with other theories such as IDT or DeLone & McLean’s IS success model to deal with rapid changes in information system and technology, as well as specificity and explanatory power improvement. Constructs of both models, TAM and IDT, are similar and they complement each other when used for IS/IT adoption. Investigators such as Sigala, Airey, Jones, and Lockwood (2000) and Chang, Sung, and Chen (2002) (as cited in Lee et al. (2011) integrated both theories and concluded that the combination of both provides a stronger model.

Organization of the Remainder of the Study

Organization of the remainder of this study will be: (a) Chapter 2, will include literature review on security issues regarding the use of mobile devices to wireless networks at post-secondary institutions; (b) Chapter 3 will discuss the quantitative methodology, instrumentation used to collect data, sample, validation and reliability of
the instrumentation, data analysis and ethical considerations used to determine hypotheses investigation; (c) Chapter 4 will include results of the study and analysis of the data collected as described in Chapter 3, and; (d) Chapter 5 will include the summary of the study, discussion, implications of the research, conclusion, and future recommendations.
CHAPTER 2. LITERATURE REVIEW

This chapter presents the literature review for this study. For this part of the study, more than 135 articles that address the issue of the vulnerability in the use of mobile devices in a wireless network were reviewed; included among these were master’s theses, doctoral dissertations, books, magazines, and websites.

Wireless Networks

According to Cisco (n.d.b.), a wireless network is a local area network (LAN) that uses radio waves to connect devices such as laptops to the Internet, and your business network and its applications. Wireless networks are the most popular technology used today, because it connects devices without affecting their mobility; this is one of the fundamental factors of wireless networks. A Wireless Local Area Network (WLAN) is a type of local area network that communicate between network-enabled devices using high frequency radio waves instead of wires. Cisco Systems Inc. (n.d.b.) pointed out that since wireless radio signals transmit through air, they are easier to intercept. Kizza (2015) describes wireless LAN as a local area network where some or all devices interconnect through microwave radio signals or in-line infrared beams instead of cables or wires.

Vu (2009) stated that wireless networks are used almost everywhere: business applications, institutions that give each student and employee wireless Internet access, and military applications. Generally, there are always requirements for protecting the confidentiality and privacy of data transmission through air. Data transmitted through air adds more worries to the task due to the possibility of service attacks.
Archidona (2010) and Meneses (2014) stated that attacks on wireless networks, usually come from nodes not authorized, i.e. nodes installed without the knowledge of the network administrators. Radio signals reach all devices that are within the coverage of a network. Network security violations usually come from unauthorized devices. Over-the-air broadcasting has vulnerabilities exploited by intruders, which can achieve associated to the access point resulting in improper use of the network.

Traffic from wireless networks is more easily spied on compared to a wired network. A practical example is passive attacks, known as sniffing. It is enough to have a mobile device with the required characteristics, to analyze the traffic that has not been encrypted. In the case of traffic analysis, the attacker obtains information by simply examining this and their patterns, i.e., (at what time certain devices are turned on, how much traffic is sent, for how much time, transmission of data, among others, to make statistics with a particular purpose). The interception of transmitted data may result in the disclosure of confidential data and user credentials without protection, in addition to the usurpation of the identity. It also allows that hackers with a certain degree of sophistication collect information about information technology and use it to attack systems or data that otherwise would not be vulnerable (Archidona, 2010, and Meneses, 2014).

Easy access to internal network allows potential attackers to forge apparently legitimate data that is not possible to do from outside the network; for example, imitate company’s e-mail messages. Users, including system administrators, tend to trust items originating from within the corporate network much more than those coming from the outside. In addition, it is possible that the goal of the attacker is as simple as using a
network as a free Internet access point. While this type of threat is not as worrisome as the previous ones, free charge will not only reduce the level of service available for legitimate users, but it could permit the introduction of viruses and other threats (Archidona, 2010, and Meneses, 2014).

IEEE 802.11 oversees the design of wireless local area networks (WLAN) protocols providing many of the most successful standards in wireless communication systems (Kim & Lee, 2015). The IEEE 802.11 protocol is a local area wireless communication standard working from 2.4 GHz to 5 GHz (Shi, Liu, Liu and Zhang, 2015). Kim and Lee (2015) stated that IEEE created a project (1980) called 802 and many working groups have been made under this project. In 1997, the first specification for WLAN was published under the 802.11-working group. The specification defined only the data rate of 1 or 2 MBS operated at 2.4 GHz band. In 1999, IEEE expanded the standard under two task groups that became known as 802.11b and 802.11a. In 2003, with the intention to support the data rate up to 54 Mbps in the 2.4 GHz band, the 802.11g task group decided to take on the same physical layer and specification of media access control of 802.11a.

Kim and Lee (2015) stated that in 2009, with the usage of Internet browsing, nevertheless, with multimedia contents, delivery needs kept growing and a demand on higher data rates in WLAN arose. The IEEE 802.11 committee approved the creation of another task group, the 802.11n. The goal of 802.11n was to achieve the throughput of 100 Mbps at the media access control layer. They employed multiple input and output techniques, including spatial-division multiplexing with up to four streams, space-time block coding, and beam forming transmission.
IEEE Standard for Information Technology (2012) indicated that modifications to the IEEE 802.11 physical layers and medium access control layer were amended with the 802.11ad in 2012. The amendment enabled operation in frequencies around 60 GHz and made capable very high throughput. It also initiated a very high throughput study group, adopted more advanced multiple-input multiple-output techniques, and allowed up to 8 streams and 160 MHz bandwidth. These techniques enabled the achievement of the network throughput higher than 1 Gbps. The latest task group, 802.11aj proposed standards, amendments, and recommended practices, which were initiated in March 2016. The task group expects to have the conditional 802 EC approval by January 2017, and by March 2017 the final approval (IEEE Standard for Information Technology (2016). Table 1 details the common IEEE 802.11 standards (IEEE-802.11 Wang, 2015).

Table 1

2015 Common IEEE 802.11 Standards

<table>
<thead>
<tr>
<th>IEEE WLAN Standard</th>
<th>PAR Approved, Modified, or Extended Dates</th>
<th>Over the air (OTA) Estimated</th>
<th>Media Access Control Layer, Services Access Point (MAC SAP) Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.11</td>
<td>March 1999</td>
<td>2 Mbps</td>
<td>20 MHz (2.4 GHz)</td>
</tr>
<tr>
<td>IEEE 802.11a</td>
<td>September 1999</td>
<td>54 Mbps</td>
<td>20 MHz (5.8 GHz)</td>
</tr>
<tr>
<td>IEEE 802.11b</td>
<td>September 1999</td>
<td>11 Mbps</td>
<td>20 MHz (2.4 GHz)</td>
</tr>
<tr>
<td>IEEE 802.11g</td>
<td>June 2003</td>
<td>54 Mbps</td>
<td>2.4 MHz (2.4 GHz)</td>
</tr>
<tr>
<td>IEEE 802.11n</td>
<td>September 2009</td>
<td>Up to 600 Mbps</td>
<td>40 MHz (2.4 GHz)/5 GHz</td>
</tr>
<tr>
<td>IEEE 802.11ac</td>
<td>January 2014</td>
<td>~ 7 Gbps</td>
<td>160 MHz (5 GHz)</td>
</tr>
<tr>
<td>IEEE 802.11ad</td>
<td>December 2012</td>
<td>~ 7 Gbps</td>
<td>2.16 GHz (60 GHz)</td>
</tr>
<tr>
<td>IEEE 802.11aj</td>
<td>March 2016</td>
<td>>10 Gbps</td>
<td>2.16 GHz (45 GHz)</td>
</tr>
</tbody>
</table>

Note: Mbps = Megabits per seconds
MHz = Megahertz
GHz = Gigahertz
GBPS = Gigabits per seconds
Kharbash (2013) studied problems of network reliability with the ability of the underlying network to deliver successful communication between the set of nodes (i.e., the sources and destinations), which is a concern, whenever there is a need for security of data transport within the network. Karbash (2013) stated that the analysis of the reliability of the network has been an important area of study in cable networks but little research has been done in academic wireless networks topics. Most of the existing work has consisted of graphs of networks with nodes and edges of identical reliability, but wireless networks are very different from wired networks because nodes are likely to fail due to their unique features, such as fluctuating average characteristics and properties of the wireless devices. For example, the broadcast nature of wireless communication links makes wireless communications unique in their vulnerability to loss of connectivity due to interference, weather conditions, and terrain effects, limited transmission range, and limited ability to change places. Because of these obstacles, there has been a paradigm shift between the traditional reliability analyses for wired network and the wireless networks.

Lu (2013) also pointed out that the explosion of wireless networks, such as WI-FI and cellular networks, have brought great changes to the daily lives of people. It also has allowed the creation of new applications and services, including smart grid systems and mobile services. However, these applications are vulnerable to denial-of-service attacks because wireless channels are shared provoking system failures with devastating consequences. A direct consequence of such attacks is system failures, including performance degradation, denial of service on the network, or problems on successful message delivery throughout the network.
Zaman, Ahmad, Azhar, Nawaz, and Abbas (2014) agreed that wireless networks are the most popular technology nowadays because of the advantage of connecting two or more devices wirelessly via radio waves at high frequency. Su (2010) indicated that the use of a wireless sensor becomes less expensive and more powerful and that there is potential use, for example, health surveillance for military detection. On the other hand, similar to other networks, sensor networks are vulnerable to malicious attacks; however, the hardware simplicity of these devices makes defense mechanisms designed for traditional networks infeasible. Malicious attacks can have a devastating impact on a sensor network and can decrease sensor lifetime from years to days.

Zaman et al. (2014) pointed out that wireless networks allow users to move within the local coverage area. This type of network setup has several advantages, such as productivity improvement due to increased easier and faster access to information resources and less expensive network configuration and reconfiguration (Choi et al., 2008). It also has some additional security challenges, compared to wired networks (Zaman et al., 2014).

Choi et al. (2008) pointed out that wireless networking provides many advantages such as productivity improvement, due to increased accessibility to information resources, and easier, faster and less expensive network configuration and reconfiguration. Nonetheless, it also brings new security threats and changes the organization’s general information security risk profile. Risk of interception through wireless network is greater than with wired networks because communication is made using radio frequencies through the air. Therefore, confidentiality can be compromised if a message is not encrypted, or encrypted with a weak algorithm and ready by an attacker.
Protecting confidentiality, safeguarding integrity, and preserving availability of the information and information systems is crucial. The technological solutions are implemented to respond to wireless security threats and vulnerabilities, it is mainly a management issue. Threats associated with wireless technology requires a comprehensive and exhaustive assessment of risk particularly due to the environment and a development of a plan to mitigate identified threats is necessary. The vulnerability of wireless can be defined as a weakness on any network that can be attacked by a threat. The weak points in the network are used by the hackers to attack the systems while at the same time they seek the vulnerability of these systems. Some threats and vulnerabilities found in wireless network are: no built-in security in architecture of wireless network protocol, system network security is a vital configuration element and network management, implementing effective network security will provide physical security and information paths, links and databases.

Choi et al. (2008) indicated that in order to ensure transmission, it is important to implement techniques, and authentication and encryption in 802.11 protocols such as WEP, WPA, and WPA2. These protocols are known as "wireless equivalent privacy", "Wi-Fi Protected Access", and “Wi-Fi Protected Access 2.” Encryption and authentication are important for wireless networks due to easily wireless network interception and manipulation, which could prevent unauthorized access, threats and vulnerabilities.

Vu (2009) indicated that wireless networking technology is being deployed everywhere in our daily lives because of ease of installation, cost efficiency, scalability and mobility. During the last ten years, there has been a substantial amount of research in
the area of wireless networks. Wireless networks offer indubitable convenience in science, educational, commercial, and military applications. It is expected that in the future, almost everything will be wireless. Examples of this trend are theater speakers, wireless home for wireless gadgets used by restaurants to avoid a long line, wireless gaming consoles, wireless laptops, and controlled wireless spacecraft cars.

Vu (2009) pointed out that wireless networks have become one of the most popular technologies today. Although they offer many benefits, there are many challenging concerns about the security of the information transmitted through the air. Network security has been going through a long and rough development process. Powerful computers, much higher bandwidth of the network, more users have access to Internet, and more technology that is sophisticated are some examples of these developments. There are probabilities that information is stolen while adversaries are interested in valuable information. Even though the system appears to be safe, there are possibilities that opponents take advantage of security vulnerabilities. As the development of more security systems, firewalls, and anti-virus software is increasing, the invention of more viruses, worms, Trojans, and hacking tools is too. Nonetheless, it is important to continue working and improving security systems in order to protect valuable assets from the enemies.

According to Cisco (2010), among the challenges that companies need to face with the use of wireless networking are the high proliferation of Wi-Fi devices and non-Wi-Fi devices that occupy the same shared of the Radio Frequencies (RF) spectrum. Those devices cause interference on the network. Among the devices included are laptops, smartphones, wireless video, and other wireless devices that interfere with
networks. Companies are adopting Wi-Fi for mission-critical data and applications because of improvements in technology. In addition, many companies lack of tools, resources, and expertise to handle the challenges brought by those new technological trends.

Kpaduwa (2010) agreed that the data that passes through a wireless LAN with disabled Wired Equivalent Privacy (WEP) is vulnerable to attacks by listening and data modification. Nonetheless, even when WEP is enabled, confidentiality and integrity of wireless traffic is still at risk because of the many flaws that WEP has shown over the years. Zaman et al. (2014) listed the following possible attacks on WEP: (a) passive attacks to decrypt traffic, based on known plaintext, chosen cipher text attacks, and statistical analysis on cipher texts; and (b) active attacks to inject new traffic from unauthorized mobile stations, to modify data, and to decrypt traffic, based on tricking the access point into redirecting wireless traffic to an attacker’s machine.

Zaman et al. (2014) stated that wireless networks are attractive to users due to ease of installation, inexpensive equipment, and low implementation costs. However, they also provide opportunities for hackers to learn, practice, and find vulnerabilities, and to launch attacks on the network. Designed flaws in security mechanisms of 802.11 standard also offers the opportunity of potential attacks, both passive and active, which can allow intruders on the system and tamper with wireless transmissions.

Zhu (2012) mentioned in his study that today many wireless technologies could be integrated to build a seamless, wireless data access platform. Even though their goals and applications are very different, a basic model that consists of an access point and a
number of wireless channels can logically represent data access through wireless technologies.

Sathyavani and Selvi (2014) indicated that wireless networking provides many advantages such as, convenience, productivity, mobility, and deployment. They also make configuration and reconfiguration of a network easier, faster, less expensive, expandable, and cost effective. This type of network brings new security threats and can alter a company’s overall information security risk profile. Messages encrypted, with weak algorithms can compromise confidentiality if a hacker reads them. However, implementation of technological solutions is the typical response to wireless security threats and vulnerabilities; wireless security is mostly a management issue. It requires a thorough and exhaustive risk assessment due to the environment and development of a plan to diminish identified threats. Although wireless networking changes the risks associated with various threats to security, the general security objectives keep being the same as with wired networks: preserving confidentiality, ensuring integrity, and maintaining availability of the information and information systems. If ensuring the safety of traditional networks is a complex task, in wireless networks it is even more difficult.

Kharbash (2013) investigated the problem of calculating the reliability of two terminals in an ad hoc mobile mode for the network wireless network. Since it is necessary to present how imperfect parameters affect network performance, and to understand the reliability analysis in the context of the wireless network, he scanned the statistical characteristics of the wireless medium. He explored how, varying transmission power nodes impact the reliability of the all-terminal network. Based on this
understanding, he proposed an algorithm for power control, which took into account statistical variation of the interference ratio of signal-to-nodes receiving, and optimally allocating transmission powers nodes to maximize both reliability links and all-terminal network reliability. The researcher focused on the deployment of relay nodes hierarchical hybrid wireless network so that the network reliability is maximized. Finally, he presented a reliability influence-ranking algorithm in order to identify the most nodes that should be considered when evaluating reliability. By identifying node reliability influence ranking on network reliability, we can focus how the reliability significance measures evaluation on fewer nodes and hereafter, prioritize the reliability improvement activities efficiently.

Raymond’s (2008) research contributed to state-of-the-art wireless sensor network research. First, it totally explored the denial-of-sleep attack, to include the implementation of a subset of these attacks on actual sensor devices, and an analysis of the efficiency of these attacks. Second, it provided a set of tools by which these attacks were detected and defeated in a lightweight, platform-independent, and protocol-independent way. Planning risk is important because it can strengthen security and improve production by reducing the number of security incidents in an organization. If there is no clear understanding of acceptable risk level required, the appropriate levels of security cannot be determined by the management (Hoo, 2000). After the implementation of a network, it is often difficult to implement new security policies in a production network. Sometimes, it can cause loss of production due to the security policies that prevent users require access to data and assets needed (Workman, Bommer, & Straub, 2008).
Stallings (2008) stated that institution of higher education faces increasing challenges on network security. Organizations constantly review and analyze their information technology structure, to implement new measurements in order to prevent the attack of viruses, spam, hackers and identity theft, also to improve their security. Certainly, these institutions faces some challenges considering that they need to maintain open labs, and unlimited access for their students.

Stallings (2008) study revealed that network security has become a main concern in institutions of higher education. However, challenges delay adequate security include lack of staff, lack of funding and lack of support from administrators. With the increase in security attacks in information technology, institutions are struggling with inadequate resources such attacks. Daley (2005) indicated, “Hackers can use educational resources to launch attacks aimed at critical infrastructure beyond a campus. Institutions must take responsibility for vulnerable systems to ensure cyberspace is being protected. If one computer is left unprotected, it can cause an epidemic not only on the university campus but in the cyber community as well; this kind of epidemic can be difficult to eradicate” (as cited in Stallings, 2008).

Zaman et al. (2014) argued that security for wireless networks does not just consist of using a password. It is recommended that setting up and using strong passwords should be required and their periodic change be forced; policies and safety standards are essential to make wireless transmission a confidential communication through air. If a user or an organization implements a wireless network, according to some of these configurations, the organization can avoid different types of threats to network security and attacks. Mani, Kim-Kwang, and Mubarak (2014) recommend that
reassessing risk, as a strategy for security in cyberspace, is necessary to include acknowledgment of understated vulnerabilities and a better-distributed knowledge about the nature and character of the overhyped threats of cybercrime, cyberterrorism, and cyberwar.

West (2008) indicated that action has been taken by the universities’ presidents whom agree to make IT security a high priority in their institutions and that commitment includes the adoption of the following policies and measures: review policies of institutional security, improve the use of existing security tools, improve the safety of future research and education networks, improve collaboration between higher education, industry and government, and integrate work in higher education with the national effort to strengthen critical infrastructure. Oblinger (2003) mention that higher education institutions have a moral and legal responsibility to protect sensitive data kept on campus computers. These because computers contain financial data records, personnel and students’ information, intellectual property and digital communications, both internally and externally that are used in everyday activities (as cited in West, 2008). A balancing act between cybersecurity and principles of the academy must be reached for institutional resources are protected without compromising the mission of the institution. National Strategy (2003) encouraged colleges and universities to ensure their cybernetic systems by establishing policies and measures where appropriate. In the case of schools, it is recommended that IT systems should launch model guidelines, empower CIOs to address cybersecurity, create one or more sets of best practices for IT security, model programs and materials user awareness to protect their systems.
Mobile Devices

The term “mobile device” is defined as:

A mobile device is a handheld computing device with a display screen that allows for user input (e.g., touch screen, keyboard). When connected to a network, it enables the sharing of information in formats specially designed to maximize the use of information given device limitations (i.e., screen size, computing power). Mobile devices provide the conveniences of conventional desktops or laptop computers in a more portable package. Examples of popular mobile devices include, smart phones and tablets. Laptop computers are not included in this definition. (Wedel & Michalowicz, 2015, p. 9)

Lin and Brown (2007) stated that the smartphone is a mobile phone that offers more advanced computing ability and connectivity than a contemporary basic feature phone. Smartphones and feature phones are as handheld computers integrated within a mobile telephone. However, while most feature phones are able to run applications based on platforms such as Java ME, a smartphone permits the user to install and run more advanced applications based on a specific platform. A smartphone runs complete operating system software providing a platform for application developers. In addition, it is a device that can take care of one’s communication, handheld computing and multimedia needs. These devices combine the functionality of mobile phones and Personal Digital Assistants (PDAs), and the smartphone offers a personal information manager, functionality, and allows professionals to install and run various computers applications.
Lin and Brown (2007) indicated that since IBM created the first Smartphone in 1993, this equipment has evolved over the years. The first Smartphone offered basic options, but now offers to users: e-mail, text messaging, GPS, Web browser and PDAs, generating major changes in the technologies and communication. The year 2006 was a good year for cell phone manufactures, including almost eighty million Smartphone. This revolution offered a great opportunity for individuals and for the companies, providing competitive benefits for businesses and individual users, and it has been rapidly growing in current years due to wide diffusion of mobile devices.

Zhu (2012) indicated that with the rapid evolution of smart mobile devices, the emerging mobile wireless networks have become increasingly popular. Data services are also growing as mobile location technology is available for most mobile devices, but also there is an increment in risks and threats when these devices connect to a wireless network.

Su (2010) pointed out that in this era there has been a rapid evolution and adoption of mobile devices such as smartphones, equipped with sophisticated input and display systems, and several similar communication technologies. This tendency has occurred simultaneously with the rapid deployment and implementation of high-speed Internet services and web-based applications. However, he emphasized that with these mobile technologies, which provide countless opportunities, also provide challenges that need to be confronted in comparison to traditional desktop computing.

Eddy (2014) indicated that the use of mobile devices at work or in people’s private lives is changing the way businesses consider implementing policies, processes, and infrastructure, regarding personnel using their personal devices at work, known as the
bring-your-own-devices (BYOD) initiatives. In a study conducted by the Information Security Community on LinkedIn of more than 200,000 information security companies, results showed that of the 66% who responded the questionnaire, 21% indicated that their organization have fully implemented BYOD procedures, infrastructure, and processes. In addition, 24% indicated that they do not have mobile devices policies; and 21% said that even though their companies do not support the BYOD adoption, they still allow employees to bring their devices to their work areas. According to Peng (2013), during the last years, there has been a tremendous growth of mobile devices and applications. In 2012, 722 million smartphones and 128 million tablets were shipped around the world. Peng (2013) also predicted that the use of mobile devices would reach 1.52 billion devices, and 352 million by 2017. Meanwhile, mobile application downloads at the Apple Store and Google Play have exceeded 50 billion and 25 billion, correspondingly.

To support mobile data devices and applications, 3G/4G cellular network infrastructures play a critical role. Mobile data traffic carried by the cellular networks is estimated to grow seven times within the next four years, from 1.6 Terabyte in 2013 to 11.2 Terabyte in 2017.

Zahadat (2016) pointed out that with the rapid increase of smartphones and tablets, companies’ information technology departments have more security concerns than before. They are monitoring more the use of mobile devices, and applying security procedures. Employees are using their personal mobile devices at work and using both their carriers’ services and the organizations’ Wi-Fi system.

Karch (2014) stated that the prevalence of mobile technology is changing the way in which people communicate, access information, conduct business, teach, and learn.
Educators are exploring new ideas for integrating mobile devices into instruction to enhance academic experiences for students and engage them in the learning process. In fact, the Educause Center for Applied Research (2012) did a survey on Mobile IT in higher education. The results showed that students are adopting mobile devices, such as smartphones, cellphones, and tablets in higher education. Results were that 67% of surveyed students believed that mobile devices are important for succeeding academically and they indicated that they use their devices for academic activities. The increased use of mobile devices on higher education has the potential to create new options for college students. They provided educational opportunities for students regarding course content access, and interaction with student colleagues and instructors.

What is mobile learning?

According to Rossing, Miller, Cecil, and Stamper (2012), it is any type of learning that takes place in learning environments and spaces that account the mobility of technology, mobility of learners and learning. There is a high potential in mobile learning; it is no longer a matter of extending devices: iPads, phones, tablets, or any other type of always-connected wireless device. In fact, formal education has moved out of the classroom and closer to the student’s physical and virtual environment. This is the essence of mobile learning –accessing information and knowledge anywhere, anytime (Traxler, 2007) from devices that learners are used “to carrying everywhere with them” and that they regard as friendly and personal.” Nowadays, learning has become lifelong, more situated, personal and useful. Because technology is more affordable and the improvement of digital networks, people turn to mobile devices as their first choice for connectivity (Rossing et al., 2012).
Furthermore, Colley, Hodkinson, and Malcom (2003); Marsick and Watkins (1990) identified mobile learning as both formal and informal learning. Formal learning by design means students engaging with materials developed by a teacher, used during a program of instruction in a highly structured, sponsored by the institution, and credited upon completion educational environment (as cited in Gikas & Grant, 2013). Halliday-Wynes and Beddie (2009) indicated that informal learning is often defined as learning that results “from daily work-related, family or leisure activities” (as cited in Gikas & Grant, 2013). According to Marsick and Watkins (2001) it is often intentional but lacks structure and context, and for Jubas (2010) this type of learning is sometimes “unanticipated, unorganized, and often unacknowledged, even by the learner” (as cited in Gikas & Grant, 2013). Gikas and Grant (2013) stated that activities such as reading, using the Internet, going to libraries, museums, zoos, and on-the-job learning are usually considered informal learning activities. In any of these activities, learners can use and access their mobile computing devices to investigate, research, or collect information to be used in their formal learning environment.

Nevertheless, Gikas, and Grant (2013) argued that learning is ever-present, and much of our learning takes place in an informal educational setting. In those instances, informal learning should not be considered as something that occurs after accomplishing formal learning but in combination. Mobile computing devices can be used as the link between formal and informal learning opportunities.

According to Rossing et al. (2012), the use of mobile technology on college campuses, for classroom activities, learning activities, research, and even student faculty communications, which are expected to rely heavily on mobile technology is growing. In
a study conducted by Indiana University and Purdue University Indianapolis (IUPUI) to interdisciplinary faculty, results showed that faculty have experimented with the use of iPads in the classroom. This growing use of technology creates new challenges for the teaching-learning process. For the last two decades, colleges and universities adapted and responded to new technologies such as the Internet, email, instant messaging, among others. This trend forced educators to evaluate the pros and cons of technology. Some researchers sustained that, while the Internet and digital technologies undeniably increase the potential access to higher education, unprepared students and faculty require intensive and steady institutional support (Rosing et al., 2012).

Rosing et al. (2012), on the other hand, presented results that indicated that students reported downsides to easy information access and availability. The biggest limitation seemed to relate to the students’ ability to access social networking, email, and games. Many students admitted to check their “email and Facebook rather than participating in the classroom because it was easier to hide.” Others found themselves wanting to “play with the apps or search the web rather than focus on course material.” The iPad limited one student from learning because all of the apps distracted him/her. Another simply “lost attention after a while.” Students found it “hard to have a discussion when attention was focused on the iPad”, and students reported difficulty listening to the professor while exploring iPad apps. Table 2 includes a list of limitations and opportunities of using mobile learning in classes.
Table 2

2012 Opportunities and Limitations of Mobile Learning (Summary)

<table>
<thead>
<tr>
<th>Theme</th>
<th>Opportunities</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access and Availability of Information</td>
<td>Research</td>
<td>Distraction</td>
</tr>
<tr>
<td></td>
<td>Real world problem solving</td>
<td>Undeveloped information literacy</td>
</tr>
<tr>
<td>Sharing and Collaboration</td>
<td>Collaborative learning and group work</td>
<td>No ownership of technology/shared resource</td>
</tr>
<tr>
<td>Novelty</td>
<td>New learning tool</td>
<td>Lack of training</td>
</tr>
<tr>
<td></td>
<td>Dynamic learning environment</td>
<td>Rapidly “outdated” technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Orientation to technology distracts from traditional learning time</td>
</tr>
<tr>
<td>Learning Styles and Technology Design</td>
<td>Design elements include more learning styles (tactile, kinesthetic, visual, auditory)</td>
<td>Design elements negatively impact learning (keyboard, size, app availability)</td>
</tr>
<tr>
<td>Convenience and Usability</td>
<td>Ease of use</td>
<td>Connectivity troubles paralyze learning</td>
</tr>
<tr>
<td></td>
<td>Intuitive design</td>
<td>Unstable/unreliable applications impact learning</td>
</tr>
<tr>
<td></td>
<td>Variety of apps</td>
<td></td>
</tr>
</tbody>
</table>

In conclusion, the study stated that new technologies keep developing at a quick rate. Guri-Rosenblit (2005) indicated that the human capacity to respond and adapt to the pace of new technologies is considerably slower and more limited. Therefore, educators using iPads or other mobile devices in the classroom must be committed and trained to use them effectively in classroom instruction, and working through the learning curve related with new technology. When introducing the use of mobile tablets (specifically iPads) in the classroom, as well as student perceptions of the learning environment should be done effectively. The interdisciplinary nature of the research teamwork and the multiple uses of mobile tablets across different teaching styles, subject matter, and
student profiles strengthens the observations in the study done by Rossing et al. (2012). They are not isolated case studies applied to one only classroom, but extensive observations and visions for the implementation of mobile learning (Guri-Rosenblit, 2005).

Use of mobile devices in higher education

Franklin (2011) conducted a study indicating that mobile technologies are engaged in many aspects of our lives, including tools that allow online environments representing 24/7 educational opportunities for learning. These devices allow educators to build new learning centers, so the students today, can stay connected using smart phones, iPads, tablets and iPod devices.

Gordon (2015) stated that higher education administrators are facing security issues, because of the massive growth of mobile devices used in the education that can cause institution’s data loss. Ghattu (2015) indicated that mobile wireless technologies (MWT) are transforming the higher education system in the United States. The incorporation of mobile technology in university classrooms change teaching and learning process. Today's students are using technology and their mobile devices to understand, learn, and explore. For example, students nowadays, use their mobile devices for web browsing, to access their online courses, read emails, read the courses’ material, and interact with the faculty and their peers. Mobile devices with wireless capabilities make learning possible instantly anywhere and everywhere, with easy access to information, offering students a faster way to perform academically.

Ghattu (2015) studied the effects of the integration of mobile wireless technologies attitudes of future teachers, and results in classrooms learning teacher
training. A pretest, and posttest exploratory model, was used to examine the effect of using this technology in the classroom. Results and learning attitudes of participants were compared between two kinds of teacher training programs to see if there was a significant effect on the use of Mobile Wireless Technology (MWT). The results of the study showed no significant change in the results and attitudes towards the use of MWT students’ learning. Due to a small sample size, the use of a single intervention limited to the experiment period; yet, as aforementioned, there were some key significant results in the study.

As stated by Ghattu (2015), to study the effects of using MWT for classroom activities, he used undergraduate students studying to be future teachers, enrolled in two sections of a training course. A section was the control group and the other was the experimental group using iPads for classroom activities. Data was collected using a pretest before treatment, and post-test after treatment by using a performance test with the purpose of investigating learning outcomes, and a survey Likert scale for researching student’s attitudes. The survey of attitudes was classified and analyzed using four factors: confidence, anxiety, utility, and formation. Results showed no significant change in students’ learning outcomes and attitudes towards using MWT. Some of the major factors for insignificant results for the study were small sample size, use of a single intervention, and limited period for the experiment. The information obtained from this study can be the foundation for further researches regarding better ways to use MWT in teacher education classrooms.
Benefits of the use of mobile devices

According to Cisco (2013), the options of mobile network access and the increasing number of applications available to them have increasingly fascinate users and organizations. Consequently, mobile device use has extended into the workplace connecting employees in more ways, more often, and from more locations causing a fine line between use of work devices and personal ones and between businesses and personal data. Many employees may think that since work time often blends with personal time, the company devices should be available for personal use. In addition, the use of mobile devices helps employees to connect to corporate resources and to work productively at home, at work, or while traveling, increase productivity, and improve job satisfaction.

Shaffer (2014) indicated that mobile devices are becoming more and more a reliable way for employees to communicate and share data across networks. More companies rely on the use of mobile devices by their employees and they are allowing employees the flexibility to use their mobile devices for work related activities. However, the decision on whether to provide company owned devices to their employees is still an issue for many businesses. Use of personal mobile devices, provides benefits such as, increase in productivity and efficiency to companies, and it becomes a desirable approach for Information Security and Technology departments. It also helps companies to save money and technology costs by not investing in mobile devices for employees if they, the employees, purchase their own devices for business purposes.

Mitrovic, Veljkovic, Whyte, and Thompson (2014) indicated that companies’ employees have rapidly adopted technology advances including tablets, computers, and smartphones. Employees use their own personal devices to perform various tasks in their
workplace, despite the pros and cons this brings to the company. It has had positive effects for the company such as increased job satisfaction, employee morale, better productivity, and consumer services.

Phifer (2013) indicated that mobile devices come in different shapes and sizes, including notebooks, tablets, smartphones, new-breed hybrid convertibles, and detachable electronics. Advantages of using mobile devices at work include a boost on employees’ efficiency by offering anywhere access to company’s data and systems; it permits rapid communication, creation and revision of documents; and it allows employees to work with agility and remotely from their physical assigned area (Phifer, 2013; Kearns, 2016).

Security threats from mobile devices

Cisco (2013) indicated that the use of mobile devices at work raises important issues in privacy and security of sensitive information. Employees download sensitive corporate data onto their personal computer or mobile devices, risking that corporate information to become lost or stolen. An increased number of companies are acquiring many products and creating policies to protect sensitive data and the network infrastructure.

Distefano, Grillo, Lentini, and Italiano (2010) indicated “the storage capability of mobile devices spans between internal memories, removable memories and SIM cards, the overall amount of sensitive personal and corporate information that can be stored in those devices can be relevant” (p.1). Furthermore, some storage volumes (e.g., removable memory cards) are fundamentally less secure than others (e.g., SIM cards). When compared to wired devices, mobile devices are lacking a number of security features such as effective anti-malware solutions, and intrusion detection systems. These can be
essential when protecting personal and corporate data. Furthermore, the reduced capabilities of these devices enforce several limitations that needs to be fulfilled in order to provide effective and appropriate security solutions. For example, the reduced computing capabilities of mobile devices limit the adoption of proactive anti-malware solutions such as those based on dynamic analysis (Distefano, Grillo, Lentini & Italiano, 2010).

Cumpston (2014) agreed that for a business, conducting a risk analysis to determine the appropriate software and hardware could be as important as the products they produce or services they offer. Safety could have long-term effects on the trust that customers or users have to the enterprise; this requires procedures to maintain its assets including data safe and secure from intruders and potential loss. To provide information on risk assessment, acceptable risk level determined during network design, by conducting a better assessment of risks, facilitates the ability of a company to determine how much money is needed to invest in security applications for the networks. This is beneficial for companies, because instead of spending large amounts of money, they will be able to balance the need for cybersecurity and funding to provide users a better service.

Mani et al. (2014) indicated that with the globalization and advancements in information and communication technology, there are more opportunities for malicious cyber activities. These activities, affect the security of businesses that are connected to the Internet throughout cyber-crime, terrorism, and war exploit pre-existing weaknesses, in their technology. Because the vulnerabilities that exist in the network are legal, they tend to be disregarded in the debate of cyber security. Guinchard (2011) indicated that
when an organization has not conducted a comprehensive analysis of IT risks, there is a substantial difference in the safety obtained compared with the improvement in safety when a risk analysis is developed and implemented.

According to Cisco Systems, Inc. (n.d.b.), employees’ behavior is a major concern, and the high risk factor with regard to corporate security and data protection. Risk behaviors of employees can, for example, expose confidential data of the company and contribute to leakage of data across networks. While businesses are becoming more dependent on mobile devices, employees contribute to the risk in the use of these devices in terms of their security practices.

Shaffer (2014) indicated that as more companies trust on smartphones and tablets for use by its employees, the risk of company data being exposed increases, and becomes a security issue that must be addressed recurrently. Companies are increasingly bringing to employees the flexibility to use mobile devices for work-related activities; however, the decision on whether to provide devices owned by the company remains a problem that many companies face. By allowing employees to use their own personal mobile devices, companies take the risk that employees’ behavior may contribute to the possibility of security breaches and data leaks. In addition, applications for mobile devices are increasingly vulnerable as the attacks continue finding ways to use malware in mobile applications, frequently downloaded by individuals. By examining security risks in mobile devices and vulnerabilities through telecommunications, organizations could provide better training and education for companies and their employees, including best practices on mobile devices and prototypes security companies use and follow. In addition, organizations need to create complex security policies that incorporate
employee behavior with mobile devices, and monitor and review behaviors to identify violations of policy and any involvement with loss of data.

Chang, Ho, and Chang (2014) indicated that IT departments are concerned with personnel bringing their mobile devices to work. Security issues such as mixing personal data with companies’ data presents security threats to organizations. Since personnel indicate that they perform better with mobile devices and are not willing to eliminate this practice, IT departments should enforce the use of two different mobile devices—one that is for personal use and one that is for professional use. Therefore, it is necessary to develop company security policies that controls employee’s access to sensitive resources when using personal devices.

Chang et al. (2014) mentioned that in a study conducted by Webroot to 2,100 people, results showed that 41 percent of the respondents said that they used personal devices such as smartphones, notebooks, and tablets for work purposes. Furthermore, 70 percent of those smartphones and tablets used for work had only factory security features, not bothering to add extra security features. In another survey, 98% of the respondents, that were employers, claimed that they have mobile security policies in the company for accessing corporate data. Still, employees tend to choose mobile devices because of their usage instead of security. Malware and device security enforcement, are major security concerns when using personal mobile devices at work. If these devices are stolen, company data on the device, presents a great threat for the company. Likewise, if users mix personal and enterprise data, this could lead to data leakage, especially if company information is accidentally sent to personal contacts on the device. Known Android malware samples increased more than 10 times between July 2012 and January 2014.
Malware steals personal information, creating a backdoor data leakage for mobile devices scenarios, even though it might not specifically target companies’ data.

Mitrovic et al. (2014) indicated that allowing employees to utilize their own device of preference in the workplace brings some risks often associated with the loss of control over company’s data. There is still a lack of understanding of a number of risks related to the use of personal mobile devices at work including how to mitigate or eliminate those risks. Organizations must modify their policies, educate employees, and tighten information and communication technologies security, to avoid risks such as data leakage and mobile malware, and other malware attacks that may compromise data consistency, and potentially cause complete data loss.

Phifer (2013) stated that the use of android devices, iPhones, and iPads during 2013 duplicated nearly twice as many than 2012. This fact actually poses many business risks for companies, because it could cause the company to lose control over its data access. It also makes it more difficult to the company determine which devices should be permitted to access company’s information, data, and systems (internet, e-mails, opens sources, programs, learning management systems). Kearns (2016) indicated that the use of mobile devices in business is increasing. Employees are using them for communications, creating and editing documents, storage and retrieval of data files, and browsing the Internet. Murtagh (2014) indicated that in 2013, purchases of mobile devices exceeded personal computers purchases (as cited in Kearens, 2016). While mobile increases employees’ agility, and allows them to work remotely, the prevalence and development of these devices creates special threats to the company, because policies and controls for computers are not sufficiently broad to cover the new threats these
devices pose (Kearens, 2016). It is necessary to formulate policies and controls to address these threats, because mobile devices present new vulnerabilities, and wireless is covering the traditional wired environment. Hackers have exploited systems and there has been an increase in the possibility of compromising company’s sensitive files. Most organizations have failed to address these security concerns through formal policies, or create specific controls to reduce threats. Failure to protect personally identifiable information, may cause the organization great loss and be exposed to fines and other penalties (Kearens, 2016).

According to Miller, Voas, and Hurlburt (2012), when an employee connects to a company’s network or machine (wired or wireless) using a personal smartphone or tablet, it creates a sense of concern regarding security threats. As soon as a personal device connects to the company’s system, malware could get access to the company’s computer and its networks. In addition, sensitive data can make its way onto the personal devices, especially privilege data with customer information that should be kept private, and company information that should be kept copyrighted. If the device is lost or stolen, the risk is greater because the information that can be accessed by anyone outside the company is exposed.

Miller et al. (2012) indicated that less than a physical characteristic makes personal device normally less secure than laptops, particularly, when the company owns the devices. Usually they applied its security policies on those machines, requiring passwords and encrypting sensitive data, on devices owned by the company, not on personal devices. In 2011, 57% of North American, Asian, and European workers reported that they selected, and paid for their own smartphones, 51% with their own
laptop, 48% with a tablet, and only 16% procured their own desktop computer, but enforcing security policies are far less likely on machines the company does not own. Miller et al. (2012). The reason these percentages do not add up to 100% is probably attributable to some subjects owning and buying multiple devices.” Put this after the words “company does not own. This is a key factor to understanding, why BYOD opens up a multiplicity of potential security holes. The information migrates to a device that the company does not control; the data is likewise no longer under control. Not all organizations let their employees use personal devices for company data, precisely because of these security and control issues.

Miller et al. (2012) stated that security concerns for mobile devices are a replay of security issues that arose when laptops were used as a daily device in the work areas. The difference between laptops and tablets is that the first one are larger than tablets. Regarding smartphones, these are more prone to be misplaced and less probable to be noticed when they disappear. In addition, personal devices have grown in number compared to laptops and netbooks. Another aspect that makes personal devices less secure than company-owned laptops is that the companies do not have control over them; therefore, security policies are less likely to be enforced on these devices.

The Association of Records Managers & Administrators (2014) stated that nearly half of companies that allow employees to connect their devices to a company’s network have experienced a data breach. Therefore, IT decision makers from the United States, United Kingdom, and Germany reported that smartphone data security is their number one concern when employers’ devices are connected to company’s networks. Moreover,
people in charge of securing company networks say that the use of personal devices in the workplace has become their biggest headache.

The Association of Records Managers & Administrators (2014) indicated that some companies mandate that employees must use company’s approved BlackBerry smartphones, which come with a securely controlled network. With BlackBerry’s future undefined and an increasing number of employees requesting to use their iPhones, iPads, and Android powered devices at work, IT managers have been forced to contemplate alternatives and to deal with those alternatives’ security threats. Data security administrators are struggling to monitor delicate information, as employees import data to their own devices and download mobile apps that have access to corporate assets. Threat experts warn that these applications have minimum or no safeguards. In addition, businesses and government agencies are concerned with the use of mobile devices because many applications fail basic security tests and mobile devices become a crucial way for attackers to reach the agencies’ network system.

In conclusion, mobile devices are being used worldwide in many scenarios, especially in educational institutions. More students are bringing their personal mobile devices to their classrooms. It not only impacts students learning and faculty teaching, but it also presents challenges to the institutions’ network infrastructure, network security, technical support, equity issues and classroom disruptions (Santos, 2013).

Organization of the Remainder of the Study

Organization of the remainder of this study will be as follows: (a) Chapter 3 will discuss the quantitative methodology, instrumentation used to collect data, sample, validation and reliability of the instrumentation, data analysis and ethical considerations
used to determine hypotheses investigation; (b) Chapter 4 will include results of the study and analysis of the data collected as described in Chapter 3, and; (d) Chapter 5 will include the summary of the study, discussion, implications of the research, conclusion, and future recommendations.
CHAPTER 3. METHODOLOGY

The researcher collected quantitative data on the use of mobile devices connected through a wireless network at a post-secondary institution, on the wireless system in a higher education environment, using IDT and TAM theories. The researcher used three questionnaires to collect quantitative data. The data collected focused on the use of mobile devices by students, faculty, and administrative personnel in a higher education institution’s wireless network. Questions were about the use of mobile devices as a working or study tool; how they applied to the participants’ working or study style, and its easiness, compatibleness, effectivity and connectivity. The researcher aimed to identify how both theories correlate, identify possible treats to a higher education institution’s network system when using mobiles devices connected to wireless networks, and possibly come out with strategies to mitigate risks.

According to Buchanan (2011), information and communication technologies are being increasingly used in education environments. An example of these technologies are the use of mobile devices. Because of its convenience, flexibility, engagement, and interactivity, mobile technology is increasing dramatically among college students (Chen & Denoyelles, 2013). Chen, Seilhamer, Bennett, and Bauer (2015) stated that mobile technology is ever-present college students’ lives. The ever-growing mobile landscape enables new learning and teaching opportunities. Chen et al. (2015) indicated that up until 2015, at least 86% of undergraduate students owned a smartphone, and nearly 47% owned a tablet. Mobile technology has transformed how students communicate, gather information, distribute their time and attention, and how they learn. Wainwright (2016)
argues that many institutions are allowing students and faculty the use mobile devices like iPads, Kindle, laptops, etc. in the classroom for a more interactive curriculum. These devices offer multiple benefits for students’ learning, but it also conveys new pressures on the institutions’ wireless networks.

Rasmus (2013) stated that there has been intense scientific activity focusing on what impact information and communications technology (ICT) has on education, and the factors that facilitate or impede this impact. According to Sevillano-García and Vázquez-Cano (2015) all these studies agree on that ICT tools and resources may influence significantly on the teaching-learning processes. Mercier and Higgins (2013) indicated that ICT suggests that knowledge should stop to be associated to specific physical spaces and persons, and it should go through concepts of “mobility” and “ubiquity”. Thorpe and Gordon (2012) argue that these spaces permit the student to become a digital content-creator, to develop his/her conception of knowledge within an area of personal learning, and extend it. This trend is reflected in international researches, for example the study performed in 2012 by the ARD/ZDF (Germany). Eimeren and Frees (2012) study concluded that mobile devices, specifically tablets and smartphones, have undergone an important development in Germany; increasing and making access easier to numerous contents on networks (as cited in Sevillano-García et al., 2015).

Sevillano-Garcia et al. (2015) recommended that risk assessment of threats associated with wireless monitoring should be done in order to set and develop a plan to mitigate identified threats. The implementation of technological solutions is one way to counter wireless security threats and vulnerabilities, making this an important issue.
Another way to help IT managers to counter threats associated with the use of wireless technology is evaluating the institution’s framework with the results of the questionnaire created by Lee et al. (2011), Adding Innovation Diffusion Theory to the Technology Acceptance Model: Supporting Employees' Intentions to use E-Learning Systems. The following research questions were examined in this study:

RQ1. How does Compatibility (CPA) relate with the Perceived Usefulness (PU), Perceived Ease-of-Use (PEU) and Behavioral Intention (BI) reported by the educational community of an Institution of Higher Education (IHE) who uses mobile devices connected through the IHE wireless network?

H1a: Effective policies of Compatibility (CPA) have a positive relationship on Perceived Usefulness (PU) to use wireless services.

RQ2. How does Complexity (CPL) relate with the Perceived Usefulness (PU), Perceived Ease-of-Use (PEU) and Behavioral Intention (BI) reported by the educational community of an Institution of Higher Education (IHE) who uses mobile devices connected through the IHE wireless network?

H2a: Effective policies of Complexity (CPL) have a negative relationship on Perceived Usefulness (PU) to use wireless services.

RQ3. How does Relative Advantages (ADV) relate with the Perceived Usefulness (PU), Perceived Ease-of-Use (PEU) and Behavioral Intention (BI) reported by the...
educational community of an Institution of Higher Education (IHE) who uses mobile devices connected through the IHE wireless network?

H3a: Effective policies of Relative Advantages (ADV) have a positive relationship on Perceived Usefulness (PU) to use wireless services.

RQ4. How does Observability (OBS) relate with the Perceived Usefulness (PU), Perceived Ease-of-Use (PEU) and Behavioral Intention (BI) reported by the educational community of an Institution of Higher Education (IHE) who uses mobile devices connected through the IHE wireless network?

H4a: Effective policies of Observability (OBS) have a positive relationship on Perceived Usefulness (PU) to use wireless services.

RQ5. How does Trialability (TRI) relate with the Perceived Usefulness (PU), Perceived Ease-of-Use (PEU) and Behavioral Intention (BI) reported by the educational community of an Institution of Higher Education (IHE) who uses mobile devices connected through the IHE wireless network?

H5a: Effective policies of Trialability (TRI) have a positive relationship on Perceived Usefulness (PU) to use wireless services.

Research Design

In this quantitative research, information on the rate of technology adoption by students, faculty and administrators of a private university in a territory of the United States was collected. The independent variable and its relation to factors innovation diffusion theory (IDT) of Davis, (1989) was explored. Perceived usefulness (PU), Perceived ease-of-use (PEU) and Behavioral intention to use (BI) are constructs of the IDT model, while relative advantage, compatibility, complexity, trialability, and
observability are constructs associated with the technology acceptance model (Davis, 1989). The main effort was to target an audience to interact with the devices. The more potential users or patrons that test the products with frequent use, the most likely they will adopt it, and demonstrate their support afterwards. Information about these constructs was collected through a questionnaire administered by a system of online surveys. According to Creswell (2009), a quantitative methodology is a research where the researcher decides what to study, asks specific constricted questions, collects many data from participants, analyzes these numbers using statistics, and conducts the investigation in an impartial objective manner. “A quantitative approach may be able to examine the significance, and to what degree, a relationship may exist between the dependent and independent variables. This approach is the most appropriate for realizing the results of this study, through the examination of the associations between variables in the research question” (Cumpston, 2014, p.33).

Data was collected through a questionnaire approved by the IRB and managed using EvaluationKit, an online tool used by the post-secondary institution to administrate electronic questionnaires, such as faculty evaluation and students’ satisfaction surveys. This tool has a module installed in the distance-learning platform of Blackboard 9.1 used by the institution. Participants can also answer the questionnaire through a link provided via e-mail. Among the instructions given to participants, once they accessed the questionnaire, they would be able to answer the questions, with the option of stop answering and close the questionnaire when desired.

The EvaluationKit administrator downloaded the anonymous data in CSV file, and then send it to the researcher. The data collected was analyzed using the SPSS
Statistics software, version 23, which was provide hypothesis testing of data obtained from the single web-based questionnaire with a five point Likert-type scale. For this study, the significance level was set on $\alpha = .05$, considering the sample size.

To examine the sociodemographic characteristics of the participants such as age, gender, and highest education obtained, among others, the researcher calculated the mean, standard deviation, frequencies and percentage, using SPSS, version 23. To test the hypothesis of the study, partial least squares structural equation modeling (PLS-SEM) was used, which examined the measurement model, and to estimate the parameters of the structural model.

The rationale supporting the selected design was a quantitative research method. According to Lee et al. (2011), the technology acceptance model (TAM) and innovation diffusion theory (IDT) are similar in some constructs and complement each other to examine the adoption of Information System and Information Technology (IS/IT). Rogers (1995) recommended five core characteristics, arguing that they are conceptually distinct, supported, and allowed for maximum generality across the perceived attributes. Davis, Bagozzi, and Warshaw (1989) explained that TAM provides a description of determinants of technology acceptance that enable explanations of user behavior across an extensive range of information, technology, and population.

Sample

The target population of this study consisted of students, faculty, and administrative employees of a higher education institution (HEI). Students connect their tablets, smartphones, laptops, etc., to the wireless infrastructure at the HEI to access their e-mail, connect to class, search information on the library database, etc. The faculty uses
the Internet to offer their courses and search for information, using the system for placement of grades, e-mail, and accessing Blackboard and workshops. The administrative staff can connect their mobile devices to the institution’s network for work and personal purposes. The institution does not have a policy that prohibits the use of wireless network for personal purposes.

The sample frame used for the research was students and faculty members of the Sciences and Technology Department, and administrative employees of a post-secondary institution in a territory of the United States. Inclusion criteria encompassed gender, age, categorization of participants (faculty, administrative, students), and self-described experience with mobile devices. Only those individuals that fit within the specified categories were eligible for participating in the study.

Figure 2 described the proposed sample size. The data was calculated for each population with a confidence level of 95%. Sample size, confidence level, and confidence interval, were estimated using Creative Research Systems Sample Size Calculator. This program is available in http://www.surveysystem.com/sscalc.htm#one. Population size was estimated in the fall semester of 2015. The formula used for calculating sample size was

\[n_1 = \text{Fac} = 135 \]
\[n_2 = \text{students} = 100 \]
\[n_3 = \text{administrative staff} = 150 \]
\[ss = \frac{Z^2 \ast (p) \ast (1-p)}{C^2} \]

In general, the researcher will use 50% of three different populations for a total of 385 participants.
Since the researchers’ only have a professional relationship with participants, this will not impose any type of influence on the volunteers’ participation. The Informed Consent Form was provided online at the beginning of the survey. All participants needed to agree before advancing into the survey.

Method

The simple analysis of variance design consisted of random and independent samples of the dependent variables associated with each of the different levels of independent variables. With this analysis, the researcher determined if the different levels of the factor (independent variables) have a significant effect and determine the value of the dependent variable. That is, the independent variables (relative advantage, compatibility, complexity, trialability and observability) have, or do not have, a significant effect on perceived usefulness, perceived ease-of-use, and behavioral intention.
Setting

The setting for this research was a university campus of a nonprofit institution located in the southern area in a territory of the United States. The campus offers non-degree certificates, and degrees of associates, bachelors, masters, and a doctorate. At the time of the study, the population consisted of 300 faculty members, 300 administrative employees, and an enrollment of 6,098 students.

Sampling Strategy

First, the researcher requested IRB approval from both institutions. After obtaining authorization by the target institution, the online survey was administered to students, faculty, and administrative (Staff) using EvaluationKit platform. The participants were notified via an email programmed in the online survey platform. EvaluationKit provides secure transmission with at least 128-bit SSL encryption, with all data transfers executed using the highest security protocol possible, software, and hardware to protect all data involved in any transaction (EvaluationKit, 2016).

When the collection period finished, the EvaluationKit administrator downloaded the data in a comma separate value (CSV) file. Then, the researcher exported the data to the SPSS statistical package to perform the corresponding analysis. For a population of 770 cases, with an alpha=.05 and a power sample = 95%, G*Power calculations required a minimum of 115 sample size for a bivariate correlation, as showed in Figure 3.
Figure 3. Sample size for a bivariate correlation. Reprinted from G*Power 3.1.9.2

For a three group a one-way ANOVA with an alpha = .05 and power of 95%, the required sample size is 249 cases. The expected sample size is 385 cases. In both cases, the sampling process surpassed the minimum requirements of 115 for a one-tail bivariate correlation, and 249 cases for a three group one-way ANOVA.
Therefore, the 115 data points shape an appropriate sample for this study, as demonstrated in Figure 4.

![Graph of ANOVA](image)

*Figure 4. One-way ANOVA with correlation. Reprinted from G*Power 3.1.9.2*

Instrumentation and Measures

This quantitative study collected its data using a questionnaire to obtain information about the use of mobile devices connected to wireless systems. According to Creswell (2009), when one instrument is modified or combined, an existing one is necessary to re-establish the validity and reliability during the data analysis. On the other hand, Rogers (1995) innovation diffusion theory (IDT) has several constructs including relative advantage, compatibility, complexity, observability, and trialability. Participants
were the educational community of a higher education institution comprised of faculty, non-faculty personnel, and students.

This research used a survey approach to investigate various aspects regarding mobile devices connected through wireless networks. The survey questionnaire consisted of two parts. The first section collected data related to the participants’ profile. The second section contained 28 items to evaluate participants’ attitude towards the use of mobile devices connected through wireless networks. The 5-points agreement Likert type scale used was the following: 5 (strongly agree); 4 (agree); 3 (undecided); 2 (disagree); and 1 (strongly disagree).

Data Collection

Data was collected through a questionnaire approved by the IRB and was managed using EvaluationKit platform. This platform consists of a Blackboard 9.1 module administered in the target post-secondary institution. It is used to create and administrate electronic questionnaires, such as the evaluation of faculty. The identified group sample received, by e-mail, an invitation of their selection to participate in this research, the purpose of the study, the informed consent to participate in the study, and the instructions for completing the questionnaire. The data collected was sent only to the investigator, who transferred the data to the application of statistics SPSS. At the end of the statistical analysis, the data was stored for a period of seven years, encrypted at 128 bit, with a password, in the institutions storage server where the investigation took place.
Data Analysis

The data collected was analyzed using the SPSS Statistics software version 23. For this study, the significance level was set on .05, considering the sample size. The researcher performed an analysis of the data distributions, and chose the appropriate statistical analysis according to those distributions. For example, would the data had complied with normality assumptions (i.e. Kolmogorff test), the researcher would choose among parametric statistics. If normality test was to fail, the researcher could choose among non-parametric tests such as Wilcoxon t-test, Mann-Whitney U test or Krustal-Wallis non-parametric ANOVA. The methodology used to load the data into SPSS was from an Excel file. Path Analysis was used if the data met the criteria of normality. In addition, a Cronbach’s alpha analysis was performed to validate the questionnaire’s reliability.

Validity and Reliability of Questionnaire by Original Authors

The original instrument was used by Lee et al. (2011) to investigate factors affecting an individual’s behavioral intentions to use the e-learning system by combining the innovation diffusion theory (IDT) with the technology acceptance model (TAM), by integrating a theoretical framework by blending TAM and IDT theories. Researchers combined innovation diffusion theory with the technology acceptance model, to propose an extended technology acceptance model. The research model included five innovative characteristics (compatibility, complexity, relative advantage, ability to try, and observe) to exert an important effect on the individuals’ and their intention to use e-learning systems (Lee et al., 2011).
Two confirmatory factor analyses (CFA) were computed using AMOS 6.0 to test the measurement models. The model-fit measures used to evaluate the model’s overall goodness of fit (χ^2/df, GFI, NFI, CFI, RMSEA) and values, as they all exceeded their respective common acceptance levels (Lee et al., 2011). This showed that the measurement model displayed a fairly good fit with the collected data.

Lee et al. (2011) indicated that a web-based and mailed survey to collect data for quantitative testing was used. A non-random sampling technique was used to collect data from five largest e-learning systems in Taiwan: fifteen firms that provide an e-learning training system for employees, including finance, manufacturing, information technology, government agencies, marketing and service businesses, were randomly selected. From 736 questionnaires were mailed but only 566 were completed and returned.

Lee et al. (2011) questionnaire consisted of three parts. Part one included 18 items, which were adapted from previous studies based on the IDT model including compatibility, complexity, relative advantages, observability and trialability to ensure content validity. Part two of the questionnaire was based on the TAM model, including PU, PEU, and BI. It contained 12 items. Part three of the questionnaire consisted of participants’ demographic data.

Lee et al. (2011) tested the endogenous and exogenous measurement models through a two confirmatory factor analysis. A model-fit measure was used to evaluate the model’s overall goodness of fit (χ^2/df, GFI, NFI, CFI, RMSEA). Results showed that the measurement model exhibited a fairly good fit with the collected data (Lee et al., 2011). For each item, means and standard deviations were determined on a scale of 1 to five, the
highest mean was 3.56 for trialability, and the lowest mean was 2.30 for complexity. The means for PU was 3.79, PEU was 3.73, and 3.62 for behavioral intention 3.62 (Lee, et al., 2011).

According to Lee et al. (2011), a structural equation modeling technique was used to test the fit of the research model because of its ability to examine simultaneously a series of dependence relationships. Fit indices were reviewed with the purpose of providing evidence on how well there is a fit between the data and the proposed structural model. A review of feasibility on each path in the model was conducted. Practical significance was evaluated based on the effect size estimation. In addition, a convergent validity of scale items was estimated by reliability, composite reliability, and average variance extracted. Confirmatory factor analyses for all scale items and composite reliabilities of all the factors surpassed the minimum loading criterion of .70. Average variance-extracted values were above 0.50. Results indicated that all three conditions for convergent validity for the four measurement models were met, making this questionnaire a solid instrument for further studies. (Lee et al., 2011).

Validity and Reliability of Questionnaire for this Study

For this study, the researcher used the Adding Innovation Diffusion Theory to the Technology Acceptance Model questionnaire created and authorized by Lee et al. (2011). With the authorization of the original authors, the questionnaire was adapted to participants’ characteristics. To examine the reliability of the questionnaire, Cronbach’s alpha and composite reliability analyses were performed. On the other hand, to examine the validity of the questionnaire, a correlation analysis between latent constructs and the average variance extracted was performed. To evaluate discriminant validity, outer
loading and cross loading of indicators of each construct of the questionnaire (ADV, VI, CPA, CPL, OBS, PEU, PU, TRI) were evaluated.

Ethical Considerations

According to Cooper and Schindler (2008), ethics considerations are norms or standards of behavior that guide moral choices about peoples’ conduct and their relationships with others. The researcher is responsible to design a project that protects all interviewers, surveyors, experimenters or observers. Ethics covered everything from the legal and regulatory aspects of our actions, utterances, and behavior to informal expectations about etiquette, expectations, protocols and norms (Traxler, 2010).

The U.S. Department of Health & Human Services (1979) indicated that no person involved in a research should influence the decisions of others regarding their participation in the research. Their consent must be granted freely or entirely voluntary. Belmont (1979) mentions that the respect for people is divided into two separate moral requirements: the requirement to acknowledge autonomy and the requirement to protect those with diminished autonomy. People must have mental or decisive capacity to understand the information presented to them in order to make an informed decision regarding them in the study. Nonetheless, not every human being is capable of self-determination due to illness, mental disability, or circumstances that severely restrict liberty. It is important that the researcher respects the immature and take into account that the disabled may require protection as they mature or while they are incapacitated. Treating people in an ethical manner is done by respecting their decisions, protecting them from harm, and making efforts to secure their well-being.
The U.S. Department of Health & Human Services (1979) stated that “respect for persons requires that subjects, to the degree that they are capable, be given the opportunity to choose what shall or shall not happen to them. This opportunity is provided when adequate standards for informed consent are satisfied” (Informed consent section, para. 1). Informed consent must include the following: research procedures and purposes, risks and anticipated benefits, alternative procedures, and a statement offering the subject the opportunity to ask questions and to withdraw at any time from the research including how to contact the researcher if any participant has any questions or doubts about the study. The disclosure must provide the information the person will need to make a documented decision.

In compliance with the norms and standards, the proposed research was submitted to the Institutional Review Board (IRB). It considered that the risks associated with this research were minimal and participants of the investigation would be fully aware of the subject, purpose, and procedures. Before starting the process of data collection for this research, the researcher ensured compliance with the protection of human rights, data confidentiality, informed consent, and disclosure forms.

The data obtained from participants through the questionnaire did not require personal information that could identify them nor the institution. The researcher did not have direct access to the database in which data was obtained. The administrator of the database submitted the information obtained from the questionnaire. Data was anonymous and aggregated to ensure confidentiality and protect individual’s privacy; the names of the participants were not accessible to the researcher. Once the answers were aggregated and reviewed by the researcher, they were stored in an encrypted 128-bit file.
on a personal computer. The data will be conserved for seven years and then will be
destroyed using the appropriate secure technology.

Organization of the Remainder of the Study

Organization of the remainder of this study will be: Chapter 4 will include results
of the study and analysis of the data collected as described in Chapter 3, and Chapter 5
will include the summary of the study, discussion, implications of the research,
conclusions, and future recommendations.
CHAPTER 4. RESULTS

The nature of this research was a non-randomized, non-experimental descriptive study. The statistical model proposed for the research was descriptive-correlation. The correlation between the constructs of both theoretical models (TAM vs IDT) was measured. This analysis is used when the study is exploratory. To analyze the research model proposed in Chapter 1 (see figure 1), SMART-PLS (Ringle, Wende, & Becker, 2015) a partial least squares based structural equation modeling (PLS-SEM) was used. PLS-SEM was used since the Shapiro–Wilk and Kolmogorov-Smirnov tests indicated that scores were not normally distributed. PLS-SEM evaluates the psychometric properties of the measurement model and estimates the parameters of the structural model. This tool enables the simultaneous analysis of up to 200 indicator variables, permitting the examination of multiple latent predictor and criterion variable indicators simultaneously.

The first part of the questionnaire asked about the participants’ profile. Results showed that the respondents’ classification was similar: 29% administrative personnel, 37% faculty, and 34% students see figure 5.

![Figure 5. Percent of participants.](image-url)
More than 50% of the participants were male and 74% of the students were in the average age of 21-24 years old. The majority of the faculty and administrative personnel had a master's degree (Figure 6), 62% percent of the overall respondents had more than 15 years of experience with computers, and 73% had more than five years of experience using a wireless data network.

Figure 6. Faculty and administrative personnel education.

Results showed that more than 70% of the participants owned a desktop computer, 87% owned a personal laptop, and 92% of the laptops had wireless capabilities. From the total of respondents, 92% owned other form of devices with wireless data capabilities. Table A1 (Appendix A) summarizes the demographic breakdown of the participants of the study (faculty, administrative, and students).
Regarding connection to wireless networks, the study revealed that students connected more minutes to the wireless network during the week than faculty and administrative personnel (Figures 7, 8, and 9).

Figure 7. Students connecting to wireless networks (minutes).

Figure 8. Faculty connecting to wireless networks (minutes).

Figure 9. Administrative personnel connecting to wireless networks (minutes).
The Measurement Model

Table 3 showed reliability results for the instrument used in this study. Data indicates that measures are robust in terms of their internal consistency reliability as indexed by the Cronbach’s alpha and the composite reliability. Except for the observability scale, the other scales registered a Cronbach’s alpha number higher than the threshold of .70 recommended (DeVellis, 2017; Spector, 1992). Conversely, other authors indicate that if Cronbach’s alpha is at least .60 (Henerson, Morris, & Fitz-Gibbon, 1987), it is acceptable in exploratory research like this one. On the other hand, the composite reliability of the different measures, ranged from .81 to .96, which exceed the recommended threshold of .70 (Nunnally, 1978). Hair, Hult, Ringle, and Sarstedt (2017) recommended reporting both criteria when analyzing and assessing the measures’ internal consistency reliability, since true reliability usually lies between Cronbach’s alpha (representing the lower bound) and the composite reliability (representing the upper bound). In addition, consistent with the guidelines of Fornell and Larcker (1981), the average variance extracted (AVE) for each measure exceeded .50, classifying a model as robust if the value of each construct is over the level of 0.5. Results of testing the discriminant validity of the measure scales is reported in Table 3. The elements in the matrix diagonals representing the square roots of the (AVE) in all cases are greater than the off-diagonal elements in their corresponding row and column, supporting the discriminant validity of all measure scales.
Table 3

Correlation Matrix Between Latent Constructs, Cronbach’s Alpha, Composite Reliability (CR) and the Average Variance Extracted (AVE)

<table>
<thead>
<tr>
<th>Construct</th>
<th>α</th>
<th>CR</th>
<th>AVE</th>
<th>CPA</th>
<th>CPL</th>
<th>ADV</th>
<th>OBS</th>
<th>TRI</th>
<th>PU</th>
<th>PEU</th>
<th>BI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compatibility</td>
<td>.93</td>
<td>.95</td>
<td>.83</td>
<td>(.91)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compatibility</td>
<td>.79</td>
<td>.88</td>
<td>.71</td>
<td>.59**</td>
<td>(.84)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative</td>
<td>.92</td>
<td>.94</td>
<td>.77</td>
<td>.74**</td>
<td>.58**</td>
<td>(.88)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advantages</td>
<td>.63</td>
<td>.81</td>
<td>.59</td>
<td>.30**</td>
<td>.34**</td>
<td>.44**</td>
<td>(.77)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observability</td>
<td>.83</td>
<td>.90</td>
<td>.75</td>
<td>.39**</td>
<td>.43**</td>
<td>.51**</td>
<td>.50**</td>
<td>(.87)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trialability</td>
<td>.94</td>
<td>.96</td>
<td>.89</td>
<td>.66**</td>
<td>.50**</td>
<td>.87**</td>
<td>.42**</td>
<td>.48**</td>
<td>(.94)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived</td>
<td>.82</td>
<td>.89</td>
<td>.73</td>
<td>.56**</td>
<td>.66**</td>
<td>.70**</td>
<td>.36**</td>
<td>.50**</td>
<td>.66**</td>
<td>(.86)</td>
<td></td>
</tr>
<tr>
<td>Usefulness</td>
<td>.95</td>
<td>.96</td>
<td>.87</td>
<td>.68**</td>
<td>.56**</td>
<td>.74**</td>
<td>.37**</td>
<td>.50**</td>
<td>.71**</td>
<td>.66**</td>
<td>(.93)</td>
</tr>
</tbody>
</table>

*Note: n=313; *p<.05, **p<.01; the elements in the matrix diagonals within parenthesis represent the square roots of the AVE.*

Convergent validity was tested by extracting the factor and cross-loadings of all indicator items to their representative latent construct. These results, presented in Table 4, indicated that all items corresponded to their respective construct from a lower bound -.61 to an upper bound of .96, and higher on their respective construct than any other. The constructs’ items’ loading and cross-loadings presented in Table 4 confirmed the convergent validity of these indicators as representing distinct constructs.
Table 4

Outer Loadings and Cross-Loadings for the Indicators of Each Measurement

<table>
<thead>
<tr>
<th>Indicators</th>
<th>ADV</th>
<th>BI</th>
<th>CPA</th>
<th>CPL</th>
<th>OBS</th>
<th>PEU</th>
<th>PU</th>
<th>TRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADV1</td>
<td>.81</td>
<td>.60</td>
<td>.63</td>
<td>-.59</td>
<td>.36</td>
<td>.61</td>
<td>.68</td>
<td>.35</td>
</tr>
<tr>
<td>ADV2</td>
<td>.90</td>
<td>.69</td>
<td>.66</td>
<td>-.54</td>
<td>.43</td>
<td>.62</td>
<td>.75</td>
<td>.47</td>
</tr>
<tr>
<td>ADV3</td>
<td>.88</td>
<td>.63</td>
<td>.67</td>
<td>-.46</td>
<td>.34</td>
<td>.60</td>
<td>.76</td>
<td>.43</td>
</tr>
<tr>
<td>ADV4</td>
<td>.90</td>
<td>.65</td>
<td>.66</td>
<td>-.46</td>
<td>.40</td>
<td>.60</td>
<td>.83</td>
<td>.48</td>
</tr>
<tr>
<td>ADV5</td>
<td>.88</td>
<td>.65</td>
<td>.62</td>
<td>-.49</td>
<td>.38</td>
<td>.62</td>
<td>.80</td>
<td>.48</td>
</tr>
<tr>
<td>BI1</td>
<td>.64</td>
<td>.88</td>
<td>.60</td>
<td>-.53</td>
<td>.30</td>
<td>.64</td>
<td>.62</td>
<td>.49</td>
</tr>
<tr>
<td>BI2</td>
<td>.69</td>
<td>.94</td>
<td>.68</td>
<td>-.54</td>
<td>.36</td>
<td>.60</td>
<td>.67</td>
<td>.46</td>
</tr>
<tr>
<td>BI3</td>
<td>.71</td>
<td>.95</td>
<td>.62</td>
<td>-.50</td>
<td>.37</td>
<td>.60</td>
<td>.70</td>
<td>.46</td>
</tr>
<tr>
<td>BI4</td>
<td>.71</td>
<td>.94</td>
<td>.64</td>
<td>-.51</td>
<td>.34</td>
<td>.61</td>
<td>.68</td>
<td>.43</td>
</tr>
<tr>
<td>CPA1</td>
<td>.68</td>
<td>.64</td>
<td>.92</td>
<td>-.54</td>
<td>.28</td>
<td>.52</td>
<td>.61</td>
<td>.37</td>
</tr>
<tr>
<td>CPA2</td>
<td>.66</td>
<td>.61</td>
<td>.94</td>
<td>-.49</td>
<td>.25</td>
<td>.49</td>
<td>.59</td>
<td>.31</td>
</tr>
<tr>
<td>CPA3</td>
<td>.68</td>
<td>.64</td>
<td>.92</td>
<td>-.53</td>
<td>.25</td>
<td>.52</td>
<td>.60</td>
<td>.33</td>
</tr>
<tr>
<td>CPA4</td>
<td>.67</td>
<td>.59</td>
<td>.87</td>
<td>-.58</td>
<td>.29</td>
<td>.53</td>
<td>.61</td>
<td>.40</td>
</tr>
<tr>
<td>CPL1</td>
<td>-.54</td>
<td>-.53</td>
<td>-.59</td>
<td>.83</td>
<td>-.25</td>
<td>-.54</td>
<td>-.47</td>
<td>-.34</td>
</tr>
<tr>
<td>CPL2</td>
<td>-.46</td>
<td>-.39</td>
<td>-.46</td>
<td>.83</td>
<td>-.27</td>
<td>-.49</td>
<td>-.39</td>
<td>-.30</td>
</tr>
<tr>
<td>CPL3</td>
<td>-.46</td>
<td>-.48</td>
<td>-.42</td>
<td>.87</td>
<td>-.34</td>
<td>-.61</td>
<td>-.39</td>
<td>-.43</td>
</tr>
<tr>
<td>OBS1</td>
<td>.39</td>
<td>.37</td>
<td>.25</td>
<td>-.29</td>
<td>.88</td>
<td>.34</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td>OBS2</td>
<td>.30</td>
<td>.26</td>
<td>.19</td>
<td>-.25</td>
<td>.78</td>
<td>.23</td>
<td>.29</td>
<td>.32</td>
</tr>
<tr>
<td>OBS3</td>
<td>.31</td>
<td>.18</td>
<td>.24</td>
<td>-.24</td>
<td>.60</td>
<td>.25</td>
<td>.29</td>
<td>.40</td>
</tr>
<tr>
<td>PEU1</td>
<td>.61</td>
<td>.56</td>
<td>.47</td>
<td>-.62</td>
<td>.32</td>
<td>.91</td>
<td>.57</td>
<td>.43</td>
</tr>
<tr>
<td>PEU2</td>
<td>.69</td>
<td>.61</td>
<td>.54</td>
<td>-.51</td>
<td>.36</td>
<td>.85</td>
<td>.68</td>
<td>.42</td>
</tr>
<tr>
<td>PEU3</td>
<td>.45</td>
<td>.51</td>
<td>.43</td>
<td>-.57</td>
<td>.25</td>
<td>.81</td>
<td>.41</td>
<td>.45</td>
</tr>
<tr>
<td>PU1</td>
<td>.82</td>
<td>.66</td>
<td>.62</td>
<td>-.46</td>
<td>.39</td>
<td>.60</td>
<td>.94</td>
<td>.47</td>
</tr>
<tr>
<td>PU2</td>
<td>.83</td>
<td>.67</td>
<td>.60</td>
<td>-.46</td>
<td>.40</td>
<td>.61</td>
<td>.96</td>
<td>.46</td>
</tr>
<tr>
<td>PU3</td>
<td>.82</td>
<td>.69</td>
<td>.64</td>
<td>-.49</td>
<td>.39</td>
<td>.64</td>
<td>.93</td>
<td>.44</td>
</tr>
<tr>
<td>TRI1</td>
<td>.45</td>
<td>.41</td>
<td>.33</td>
<td>-.34</td>
<td>.48</td>
<td>.41</td>
<td>.43</td>
<td>.85</td>
</tr>
<tr>
<td>TRI2</td>
<td>.45</td>
<td>.45</td>
<td>.34</td>
<td>-.38</td>
<td>.44</td>
<td>.43</td>
<td>.42</td>
<td>.89</td>
</tr>
<tr>
<td>TRI3</td>
<td>.42</td>
<td>.42</td>
<td>.33</td>
<td>-.39</td>
<td>.39</td>
<td>.46</td>
<td>.40</td>
<td>.86</td>
</tr>
</tbody>
</table>

Note: ADV=Relative Advantage, BI=Behavioral Intention, CPA=Compatibility, CPL=Complexity, OBS=Observability, PEU=Perceived Ease-of-Use, PU=Perceived Usefulness, TRI=Trialability.
Despite the fact that the Fornell-Larcker’s criterion and the examination of cross-loadings are the dominant approaches for evaluating discriminant validity, Henseler, Ringle, and Sarstedt (2015) proposed an alternative approach, based on the multitrait-multimethod matrix to assess discriminant validity. In this approach, the heterotrait-monotrait ratio (HTMT) of correlations is calculated. The HTMT approach is an estimate of what the true correlation between two constructs would be if they were perfectly measured (i.e., if they were perfectly reliable). This true correlation is also referred to as disattenuated correlation. A disattenuated correlation between two constructs close to 1 indicates a lack of discriminant validity.

Results presented in Table 5 show that none of the correlations reach the threshold value of .90, suggesting the discriminant validity of the all measures.

Table 5

<table>
<thead>
<tr>
<th>Heterotrait-Monotrait Ratio (HTMT)</th>
<th>CPA</th>
<th>CPL</th>
<th>ADV</th>
<th>OBS</th>
<th>TRI</th>
<th>PU</th>
<th>PEU</th>
<th>BI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compatibility (CPA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complexity (CPL)</td>
<td>.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative Advantages (ADV)</td>
<td>.80</td>
<td>.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observability (OBS)</td>
<td>.39</td>
<td>.48</td>
<td>.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trialability (TRI)</td>
<td>.44</td>
<td>.52</td>
<td>.58</td>
<td>.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived Usefulness (PU)</td>
<td>.71</td>
<td>.57</td>
<td>.89</td>
<td>.54</td>
<td>.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perceived Ease-of-Use (PEU)</td>
<td>.64</td>
<td>.81</td>
<td>.79</td>
<td>.49</td>
<td>.61</td>
<td>.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Behavioral Intention (BI)</td>
<td>.72</td>
<td>.64</td>
<td>.79</td>
<td>.46</td>
<td>.56</td>
<td>.76</td>
<td>.75</td>
<td></td>
</tr>
</tbody>
</table>

Based on prior researches and their results, Henseler et al. (2015) suggested a threshold value of .90 if the path model includes constructs that are conceptually very similar. Therefore, an HTMT value above .90 suggests a lack of discriminant validity.
PLS-SEM, however, does not rely on any distributional assumptions and standard parametric significance tests cannot be applied to test whether HTMT statistic is significantly different from 1. Instead, researchers have to rely on a procedure called bootstrapping to derive a distribution of the HTMT statistic. The bootstrapping procedure derives a confidence interval; a confidence interval containing the value of 1 indicates a lack of discriminant validity. Conversely, if the value of 1 falls outside the interval’s range, this suggest that the two constructs are empirically distinct. None of the path models included in their confidence intervals the value of 1, which suggest the discriminant validity of the measures. Boostrapping was used in this research for calculating the intervals of confidence and examine if those intervals of confidence included or not the value 1. None of them intervals included it, thus, the discriminant validity of the measurement model was established.

The Structural Model

Figure 10 shows the structural model results. In the analysis of the structural model, the value in each circle represent the R^2 of the dependent variables. The values through the line between each construct show the significant of the path coefficients among variables. The indicators pointing away from the construct, with their respective results are illustrated by rectangular boxes (see figure 10). The perceived usefulness variable obtained the larger R square ($R^2 = .771$), followed by behavioral intention ($R^2 = .640$), and perceived ease-of-use ($R^2 = .592$). Eight of the 18 hypotheses were significant and seven of the eight were in a positive direction.
Model Hypotheses

In the structural model, seven different set of hypotheses were analyzed. Table B1 (see Appendix B) shows the hypotheses relationship of Compatibility (CPA) on Perceived Usefulness (PU), Perceived ease of use (PEU) and Behavioral Intension (BI). The relationship of CPA on PU was non-significant, $\beta_{\text{CPA-PU}} = .045$, $p = .490$, but was significant on BI, $\beta_{\text{CPA-BI}} = .246$, $p = .001$; on (PEU) was non-significance, $\beta_{\text{CPA-PEU}} = -.016$, $p = .837$. However, the relationship of (CPA) on (BI) was the only statistically significant.

The hypotheses relationships of Complexity (CPL) on Perceived Usefulness (PU), Perceived ease of use (PEU) and Behavioral Intension (BI) was non-significant, $\beta_{\text{CPL-PU}} =$
.078, \(p = .080 \), \(\beta_{\text{CPL BI}} = .052, p = .358 \); but CPL was significant on PEU, \(\beta_{\text{CPL PEU}} = .357, p = .001 \).

The Relative Advantage (ADV) on Perceived Usefulness (PU), Perceived ease of use (PEU) and Behavioral Intension (BI) were positive, \(\beta_{\text{ADV PU}} = .775, p = .001 \), \(\beta_{\text{ADV BI}} = .157, p = .138 \); on PEU was positive and significant, \(\beta_{\text{ADV PEU}} = .434, p = .001 \). The relationship between the ADV on PU and PEU was the only statistically significant, \(p = .001 \).

In the case of Observability (OBS) on Perceived Usefulness (PU), Perceived ease of use (PEU), and Behavioral Intension (BI) were positives, but all non-significant on \(\beta_{\text{OBS PU}} = .031, p = .375 \), \(\beta_{\text{OBS BI}} = .003, p = .941 \); \(\beta_{\text{OBS PEU}} = -.013, p = .782 \).

However, in the Trialability (TRI) on Perceived Usefulness (PU), Perceived ease of use (PEU), and Behavioral Intension (BI) were positive, \(\beta_{\text{TRI PU}} = .033, p = .434 \), \(\beta_{\text{TRI BI}} = .102, p = .028 \); \(\beta_{\text{TRI PEU}} = -.142, p = .024 \).

The Perceived ease of use (PEU) was regress on Perceived Usefulness (PU), and Behavioral Intension (BI). PEU was positive and non-significant on \(\beta_{\text{PEU PU}} = .114, p = .070 \), but positive and significant on \(\beta_{\text{PEU BI}} = .182, p = .030 \).

The relationship between Perceived Usefulness (PU), and Behavioral Intension (BI) was positive and significant, \(\beta_{\text{PU BI}} = .222, p = .043 \). The conclusion indicates that hypothesis was: (1) supported, or (2) not supported.
Organization of the Remainder of the Study

Organization of the remainder of this study, Chapter 5, will include the summary of the study, discussion, implications of the research, and conclusions. Future recommendations are also included in Chapter 5.
CHAPTER 5. DISCUSSION, IMPLICATIONS, RECOMMENDATIONS

The researcher investigated the use of mobile devices by students, faculty and administrative personnel, connected through a wireless network at a post-secondary institution. This was accomplished at a university site using the innovation diffusion theory (IDT) and technology acceptance model (TAM) as a background theory. The researcher aimed to identify the use of mobile devices connected to a wireless network of a higher education institution, and possibly come out with strategies to mitigate risks.

Statement of the Problem

Every day, new generations of mobile devices are connected to the wireless network. This produces an increase in risks and security challenges, resulting in more information transmitted through the application, and consequently an increase of risk in personal safety. Recent threats, such as malware and viruses, to the security of information technology have expanded bringing high imminent risk (Zaman et al., 2014).

The researcher, through the investigation, explored protective strategies and procedures to be implemented in a post-secondary institution because of the risk involved in transmitting information through mobile devices, like smartphones or tablets. This issue is relevant for the Information Technology (IT) field, because it is necessary to promote and provide security in all communication devices like smartphones, due to the continuous evolution of this equipment, and its use in new developments.

The study was conducted using the instrument: adding innovation diffusion theory to the technology acceptance model: Supporting Employees' Intentions to use E-Learning
Systems. *Educational Technology & Society* created by Lee et al. (2011). The instrument included 27 items and 15 demographic questions. The instrument was uploaded online using Evaluation KIT system. The survey was sent to 320 individuals who were students of the Department of Computer Sciences, faculty members, and administrative personnel. Data collected from the survey were (a) the sociodemographic characteristics of the participants such as: age, gender, highest education obtained, among others; (b) the mean, (c) standard deviation, (e) frequencies, and (f) percentage which were estimated using the Statistical Package for the Social Sciences (SPSS) version 23. To test the hypothesis of the study, partial least squares structural equation modeling (PLS-SEM) was used, which examined the measurement model and estimated the parameters of the structural model of Ringle, Wende, and Becker (2015).

Summary of the Results

Using the research survey and the corresponding results, the data provided the foundation for answering the research questions in Chapter 1. The perceived usefulness variable obtained the larger R^2 square ($R^2 = .771$), followed by behavioral intention ($R^2 = .640$), and perceived ease-of-use ($R^2 = .592$).

The following research questions were answered on Table 6:

RQ1. How does Compatibility (CPA) relate with the Perceived Usefulness (PU), Perceived Ease-of-Use (PEU) and Behavioral Intention (BI) reported by the educational community of an Institution of Higher Education (IHE) who uses mobile devices connected through the IHE wireless network?

RQ2. How does Complexity (CPL) relate with the Perceived Usefulness (PU), Perceived Ease-of-Use (PEU) and Behavioral Intention (BI) reported by the
educational community of an Institution of Higher Education (IHE) who uses mobile devices connected through the IHE wireless network?

RQ3. How does Relative Advantages (ADV) relate with the Perceived Usefulness (PU), Perceived Ease-of-Use (PEU) and Behavioral Intention (BI) reported by the educational community of an Institution of Higher Education (IHE) who uses mobile devices connected through the IHE wireless network?

RQ4. How does Observability (OBS) relate with the Perceived Usefulness (PU), Perceived Ease-of-Use (PEU) and Behavioral Intention (BI) reported by the educational community of an Institution of Higher Education (IHE) who uses mobile devices connected through the IHE wireless network?

RQ5. How does Trialability (TRI) relate with the Perceived Usefulness (PU), Perceived Ease-of-Use (PEU) and Behavioral Intention (BI) reported by the educational community of an Institution of Higher Education (IHE) who uses mobile devices connected through the IHE wireless network?

The results of the analyses performed by the researcher revealed that the variables’ results obtained of eight of the 18 hypotheses were significant, and seven of the eight were in a positive direction shown in table 6.
Table 6

Hypotheses Testing Results

<table>
<thead>
<tr>
<th>Hypotheses</th>
<th>Path</th>
<th>Direction</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1<sub>a</sub></td>
<td>CPA-PU</td>
<td>Positive</td>
<td>Not supported</td>
</tr>
<tr>
<td>H1<sub>b</sub></td>
<td>CPA-PEU</td>
<td>Negative</td>
<td>Not supported</td>
</tr>
<tr>
<td>H1<sub>c</sub></td>
<td>CPA-BI</td>
<td>Positive</td>
<td>Supported</td>
</tr>
<tr>
<td>H2<sub>a</sub></td>
<td>CPL-PU</td>
<td>Positive</td>
<td>Not supported</td>
</tr>
<tr>
<td>H2<sub>b</sub></td>
<td>CPL-PEU</td>
<td>Negative</td>
<td>Supported</td>
</tr>
<tr>
<td>H2<sub>c</sub></td>
<td>CPL-BI</td>
<td>Negative</td>
<td>Not supported</td>
</tr>
<tr>
<td>H3<sub>a</sub></td>
<td>ADV-PU</td>
<td>Positive</td>
<td>Supported</td>
</tr>
<tr>
<td>H3<sub>b</sub></td>
<td>ADV-PEU</td>
<td>Positive</td>
<td>Supported</td>
</tr>
<tr>
<td>H3<sub>c</sub></td>
<td>ADV-BI</td>
<td>Positive</td>
<td>Not supported</td>
</tr>
<tr>
<td>H4<sub>a</sub></td>
<td>OB-PU</td>
<td>Positive</td>
<td>Not supported</td>
</tr>
<tr>
<td>H4<sub>b</sub></td>
<td>OB-PEU</td>
<td>Negative</td>
<td>Not supported</td>
</tr>
<tr>
<td>H4<sub>c</sub></td>
<td>OB-BI</td>
<td>Negative</td>
<td>Not supported</td>
</tr>
<tr>
<td>H5<sub>a</sub></td>
<td>TRI-PU</td>
<td>Positive</td>
<td>Not supported</td>
</tr>
<tr>
<td>H5<sub>b</sub></td>
<td>TRI-PEU</td>
<td>Positive</td>
<td>Supported</td>
</tr>
<tr>
<td>H5<sub>c</sub></td>
<td>TRI-BI</td>
<td>Positive</td>
<td>Supported</td>
</tr>
<tr>
<td>H6<sub>a</sub></td>
<td>PEU-PU</td>
<td>Positive</td>
<td>Not supported</td>
</tr>
<tr>
<td>H6<sub>b</sub></td>
<td>PU-BI</td>
<td>Positive</td>
<td>Supported</td>
</tr>
<tr>
<td>H7<sub>a</sub></td>
<td>PU-BI</td>
<td>Positive</td>
<td>Supported</td>
</tr>
</tbody>
</table>

Discussion of the Results

Contrary to Lee et al. (2011) study, compatibility, complexity, trialability and perceived ease of use had no significant effect on PU. When mobile devices connected through wireless networks were perceived to be of higher complexity, trialability, compatibility, and perceived ease of use, employees and students tended to perceived less usefulness of the mobile devices.

The relative advantages result was consistent with Lee et al. (2011) showing a significant positive effects on PU. It could be implied that prior to the employees’, students’ and administrative personnel’s decision to use mobile devices connected
through wireless networks, they tended to evaluate whether mobile devices connected through wireless networks could meet their needs or be relevant to their job. If they perceived that using mobile devices connected through wireless networks are better than the devices connected through the LAN, they may perceive connection through wireless as more useful. Figure 11 demonstrated that 77% of the students thought that using mobile devices connected through wireless networks enhanced the effectiveness in their studies. Sixty-seven percent of the faculty and 72% of the administrative personnel thought that mobile devices enhanced their job effectiveness.

Figure 11. Mobile devices connected to wireless networks enhances effectiveness.

The results of the study demonstrated that observability had significant positive effects on PU, which were consistent with Lee et al. (2011). The possible reason was that although the students and personnel could observe other individual’s using mobile devices connected through wireless networks and had an impression of how to use them, they did not perceive if mobile devices were less useful in facilitating their job performance. The results obtained in the study and presented on Figure 12 showed that 84% of the students, 76% of the administrative personnel, and 74% of the faculty
members thought that mobile devices connected to wireless networks increased their productivity.

![Bar chart showing the percent of students, faculty, and administrative personnel who think mobile devices connected to wireless networks fit the way they like to study or work.]

Figure 12. Mobile devices connected to wireless networks increase productivity.

Compatibility and observability were consistent with Lee et al. (2011) showing that they had no significant positive effects on PEU. The less the perceived compatibility of using mobile devices connected through wireless networks for study and working style indicated that it is less likely that the future intention of students, faculty and administrative personnel would adopt it. Furthermore, the less the perceived observability of using mobile devices connected through wireless networks indicated that it was more unlikely the present intention of students, faculty and administrative personnel will adopt it. Figure 13 represented students’ (87%), faculty’s (85%), and administrative personnel (80%) opinion if mobile devices connected to wireless networks fitted the way they liked to study or to work. The three groups opinions were similar. The percent of difference between their perceptions was not significant.
The Complexity (CPL) variable results were consistent with the result of Lee et al. (2011) showing that the variable had no significant positive effects on PEU. The greater the perceived complexity of using mobile devices indicated that it was less likely intended to use them. The results displayed in Figure 14 showed that 86% of the students, 83% of the faculty, and 79% of the administrative personnel understood that mobile devices connected to wireless networks were easy to use.
The results of the relative advantages (ADV) and trialability (TR) were consistent with Lee et al. (2011), showing significant positive effects on PEU. Participants believed that using mobile devices connected through wireless networks was easier to use and required little effort to improve the quality of the learning process and the work they do. Therefore, the greater the perceived relative advantage of using mobile devices connected through Wireless networks to improve the quality of the work, the more likely students, faculty and administrative personnel would try these devices. Furthermore, the greater the perceived trialability of using mobile devices connected through Wi-Fi, the more likely students, faculty and administrative personnel would try out the devices’ different uses (see figure 15). Results demonstrated that 78% of the students, 75% of the faculty, and 72% of the administrative personnel thought that mobile devices improved the quality of their study, teaching or work.

Figure 15. Mobile devices connected to wireless networks improve study or work.
Of the participants, 75% of the students, 63% of the faculty, and 51% of the administrative personnel had the opportunity to try out various uses of the mobile devices before deciding on whether or not to use them (see Figure 16).

![Figure 16. Try out various uses of mobile devices before deciding to use them.](image)

Contrary to Lee et al. (2011), relative advantage (ADV) and observability (OB) had no significant effect on behavioral intention (BI). Students, faculty and administrative personnel believed that direct experience and seeing others using mobile devices connected through wireless networks did not affect their behavioral intention to use these technologies. Figure 17 showed that 71% of the students, 60% of the faculty, and 48% of the administrative personnel saw many people using mobile devices outside of campus before deciding on whether or not to used them.

![Figure 17. Try mobile devices outside the campus.](image)
The results of compatibility, complexity, trialability, were consistent with Lee et al. (2011), showing that there are significant positive effects on Behavior Intention (BI). The higher the compatibility, the higher the behavioral intention to use mobile devices connected through wireless networks. Therefore, compatibility, complexity and trialability affected the users’ behavioral intention to use these technologies.

Contrary to Lee et al. (2011), PU had a significant effect on Behavioral Intention. Perceived use had a positive and direct effect on the behavioral intention to use mobile devices connected through Wi-Fi. We can therefore interpret that students, faculty, and administrative personnel thought that higher perceived usefulness resulted in a higher behavioral intention to use mobile devices connected through Wi-Fi. Perceived ease of use of mobile devices connected through Wi-Fi increased the students, faculty, and administrative personnel effectiveness in their studies and jobs (see Figure 18).

![Figure 18. Effectiveness for studying or working.](image)

The employees and student’s behavioral intention (BI) was shown to be significantly influenced by perceived Compatibility (CPA), Complexity (CPL),
Trialability (TRI), and Perceived Usefulness (PU) and towards the use of mobile devices connected through wireless networks. Meanwhile, Behavioral Intention (BI) had no significant effect on students, faculty, and administrative personnel’s relative advantage to use mobile devices connected through wireless networks. As perceived by 55% of the students, acceptance of innovation did not make learning processes easier throughout the use of mobile devices. On the contrary, the faculty and the administrative staff considered that the acceptance of innovation makes their job easier. Meanwhile, students and employees Perceived Ease-of-Use (PEU) showed not to be significantly influenced by the Complexity (CPL) of mobile devices connected through wireless networks. Students and employees Perceived Ease-of-Use (PEU) showed to be significant influenced by Relative Advantage (ADV), and Trialability (TRI). Perceived Usefulness (PU) results showed no significant effect in the Compatibility (CPA), Complexity (CLP), and Trialability (TRI) in the use of mobile devices connected to wireless network. Students and employees perceived usefulness exhibited not to be significantly influenced by perceived ease of use on mobile devices connected to wireless network. Meanwhile, students and employees’ Perceived Usefulness (PU) was shown to not be significantly influenced by Observing (OB) the use of mobile devices connected to wireless networks before deciding to use them. Students and employees Perceived Ease-of-Use (PEU) showed to be not significantly influenced by Comparability (CPA) and Observability (OB) of mobile devices connected through wireless networks.

Meneses (2014) stated that some features of WLAN facilitates the incidence of unintentional threats. For example, an authorized visitor could start a mobile device without the intention of connecting to the network, but the connection to the WLAN of
the company occurs automatically. Thus, the mobile device of the visitor becomes a point of virus entry into the network. This type of threat only occurs on unprotected WLAN. Even if the organization does not officially have a WLAN, there is the risk of threats from non-managed WLAN that can make your appearance in the network. It is now possible to buy very cheap WLAN hardware, which can introduce unintended vulnerabilities in the network. There are a number of known strategies that significantly improve the WLAN security, which consist of very basic configuration tasks, in order to reinforce the more robust security mechanisms.

Meneses (2014) recommended the following strategies to improve WLAN security: (a) to consider the use of mechanisms that provide a level of security appropriate to the user, as well as making use of exploration systems and monitoring wireless network packets to detect unauthorized use of wireless components; (b) change the extended service set identification name of the WLAN which is assigned by manufacturers; (c) change the password assigned by manufacturers; (d) disconnect the power supply of the authentication protocol when is not in use; (e) deactivate the broadcasting of the extended service set identification; (f) set a maximum number of devices that can be connected to the wireless network; (g) deactivate the dynamic host configuration protocol; (h) enable filtering of the median access control address; (i) use data encryption protocols; (j) use IEEE 802.1 x-EAP authentication and data encryption; (k) use a virtual private network and internet protocol security; and (l) use internet protocol security to protected WLAN traffic. Apart from the level of security provided by each of these solutions, the basic determining factor depends on the resources needed and compatibility to implement solutions.
Limitations, Suggestions and Implications

The study results and discussion should be viewed as an overview of the security concerns that need to be addressed related to the use of mobile devices in a postsecondary institution. The limitations of this research provide the foundation for future research. This research was conducted under certain assumptions and consequently is subjected to the following limitations:

1. The limited number of participants; that only included students of the computer major in one of the nine campuses of the university. As a result, the outcomes of this study may not be generalizable to other institutions.

2. This study relied on a convenience sample and the availability of participants to answer the questionnaire that may possibly introduce bias.

3. Participant responses were limited by their perceptions of the use of mobile devices connected to wireless networks. Preceding studies have shown that user perceptions change over time as they become more expert (Lee & Song, 2013).

In consequence, this study may not be sufficient, for that reason, the inclusion of other factors such as the type of data accessed and downloaded on the devices considering the purposes of doing so, may benefit future research.

Recommendations for Further Study

The research process should be a continuous one. Some recommendations for further study are suggested:

1. A future study could invite all students, faculty, and administrative personnel in the campus to participate in this research regarding the use of mobiles
devices connected to a wireless network. This study took into account only the opinion of the students enrolled in the computer major. Other students of other majors also could be using mobile devices connected to the institution’s wireless network, and their opinion should be considered.

2. A future research could be conducted in similar institutions in a territory of the United States or abroad to find out the degree to which the study findings can be replicated. According to Gordon (2015), the phenomena of mobile devices is growing in popularity among higher education institutions. A future research could be conducted to investigate what institutions are doing to protect their data from hackers, intrusions and unauthorized users from accessing confidential information, and whether this varies by geographical and social situations (e.g., public versus private, rural versus urban, etc.).

3. Due to the proliferation of mobile devices on campus, institutions of higher education are providing ubiquitous and fast Internet access for the multitude of devices (Campus Technology, 2011). Therefore, securing the institution’s wireless network properly is important. A future study could be conducted to investigate what products and techniques are available to secure the wireless networks based on the type of analysis performed here, but customized for the specific institution.

4. Another recommendation for future study could be the adoption of biometric technologies to improve data security on wireless networks.

5. Further studies on continuing changing dynamics of mobile devices by narrowing down how they are used in the education field could be
investigated. This could help higher education institutions’ focus on actual security breaches.

6. The researcher investigated the use of mobile devices for study, teaching and working purposes. Future research could consider doing a study regarding using mobile devices for personal purposes, connected to an institution’s wireless network, and what are the effects of accessing web pages outside of the institution.

7. Another area of possible study is researching to explore how the use of mobile devices affects the educational innovation.

8. A qualitative study (e.g., case study) could be conducted to investigate the effects of using mobile devices as a learning tool in classroom activities.

9. A study that would be interesting could investigate what challenges higher education faces with the use of mobile devices (infrastructure, professional development, courses’ content, strategies, productivity and, instructional design, guidelines) as working, teaching, and learning tools.

10. Finally, studying the creation of policies for mobile devices that include access to corporate’s network, how, when, and whom can connect, authentication, what data can and cannot be accessed, what applications are allowed and what types of data can be generated on mobile devices would be appropriate for this field of study.
Conclusions

This study was conducted to explore information of vulnerabilities in the use of mobile devices connected through a wireless network at a post-secondary institution. The target population of this study was the students, faculty, and administrative employees of a higher education institution (HEI). The innovation diffusion theory (IDT) and technology acceptance model (TAM) was used as a background theory. While the merits of the TAM were demonstrated, the findings of this study provided greater insights when analyzing users’ acceptance and adoption of the use of mobile devices in wireless systems in a (IHE). Founded on the supported hypothesis H1c and its positive significance, this study revealed that students perceive the use of mobile devices as appropriate for their learning styles, enhances their effectiveness in learning, and enables them to accomplish their work faster. Faculty and administrative personnel think that mobile devices connected through wireless networks enable them to accomplish their work faster, thus improving the quality of their work as shown in the supported and positive significance of the hypotheses H3a and H3b. For that reason, system developers, designers, and institutional purchasers should monitor and update the current system in the use of the wireless systems in a higher education environment whenever the needs of students, faculty, and employees demand it. This will ensure that the selected systems effectively meet these demands.

Mobile technology is booming in higher education. Every year, more students and personnel use their own devices for personal and professional purposes (Stansbury, 2014). Stansbury (2016) indicated that the following issues and challenges that IT department will face in 2017 are: (a) reduce institutional exposure to information security
threats; (b) effectiveness of application of data and predictive analytics to improve student success and completion; (c) data-informed decision-making; (d) reinforcing the role of IT leadership as a strategic partner with institutional leadership; (e) improvement of institutional data management through data standards, integration, protection, and governance; and (f) collaborating with academic personnel to apply technology to teaching and learning processes to innovate pedagogy and meet institution’s mission.

Findings of this study suggest that IT (information technology) managers of the university should consider factors affecting students and employees’ intention towards the use of mobile devices connected to wireless networks. The results observed on the effect that relative advantage (ADV) and trialability (TR) have on perceived ease of use (PEU), were the participants are willing to use mobile devices if they perceived that the devices are easy to use and they serve their purposes. Wireless networking offers various opportunities to expand profitability and cut expenses. It additionally changes an organization’s computer security risk profile. Despite the fact that it is difficult to thoroughly dispense with all dangers associated with remote wireless networking, it is possible to accomplish a sensible level of general security by adopting an efficient way to deal with assessing and overseeing hazards (Sathyavani & Selvi, 2014).

Kearns (2016) stated:

While mobile devices have made it easier for hackers to exploit systems and increased the possibility of compromising sensitive files, most organizations have failed to address these security issues through formal policies or create specific controls to reduce their likelihood. As hackers engineer increasingly sophisticated attacks organizations must increase
their vigilance. Because mobile devices present new vulnerabilities and wireless is eclipsing the traditional wired environment, it is necessary to formulate policies and controls to address these threats. (p.36)

The time has shown that wireless networks rely on lines of defense that can compromise information systems due to the increasing use of mobile devices. This significant increase brings with it concerns and challenges in the proper management of controls such as firewalls, intrusion detection systems, and proxy servers. Existing controls are effective for mobile security but are not enough to handle inappropriate use, theft and lack of adequate commitment (Kearns, 2016).

According to Poarch, Zimmermann, Grahn, and Cook (2016), the use of mobile devices in the workplace is increasing and it could result in company’s data loss, security breaches and regulatory compliance violations. Companies can reduce these risks by implementing a well-supported mobility and security awareness program. Policies creation, communication, performing risks assessments, continuous monitoring and evaluation should be performed by companies, IT department.

Poarch, Zimmermann, Cook, Burbback and Wiatrak (2013), recommend that companies should set the base for securing corporate data, providing safe and productive access. With the incorporation of well-supported mobility and security programs, companies can obtain the right balance between security and usability, and leverage the next generation of consumer technology.
REFERENCES

Cisco. (n.d.b.). *What is a wireless network?* Retrieved from
http://www.cisco.com/cisco/web/solutions/small_business/resource_center/artic
les/work_from_anywhere/what_is_a_wireless_network/index.html

Creative Research Systems. (2012). *Sample size formulas for our sample size
calculator.* Retrieved from http://www.surveysystem.com/sample-size-
formula.htm

Creswell, John W. "Qualitative procedures." *Research design: Qualitative,

Cumpston, N. L. (2014). *Network risk assessment and the assigned level of accepted
risk* (Order No. 3634679). Retrieved from ProQuest Dissertations & Theses
Global. (UMI No. 1614191232).

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance

SAGE Publications, Inc.

Enforcing security in the mobile devices lifecycle. In *Proceedings of the Sixth
Annual Workshop on Cyber Security and Information Intelligence Research,
CSIIRW '10, New York, NY, USA.* ACM.

doi:http://dx.doi.org/10.5038/1944-0472.4.2.5

Karch, K. (2014). An investigation of perceptions about smart mobile phone usage as an instructional tool in a high school classroom (Order No. 3620696). Retrieved from Dissertations & Theses @ Capella University. (UMI No. 1540789099).

STATEMENT OF ORIGINAL WORK

Academic Honesty Policy

Capella University’s Academic Honesty Policy (3.01.01) holds learners accountable for the integrity of work they submit, which includes but is not limited to discussion postings, assignments, comprehensive exams, and the dissertation or capstone project.

Established in the Policy are the expectations for original work, rationale for the policy, definition of terms that pertain to academic honesty and original work, and disciplinary consequences of academic dishonesty. Also stated in the Policy is the expectation that learners will follow APA rules for citing another person’s ideas or works.

The following standards for original work and definition of plagiarism are discussed in the Policy:

Learners are expected to be the sole authors of their work and to acknowledge the authorship of others’ work through proper citation and reference. Use of another person’s ideas, including another learner’s, without proper reference or citation constitutes plagiarism and academic dishonesty and is prohibited conduct. (p. 1)

Plagiarism is one example of academic dishonesty. Plagiarism is presenting someone else’s ideas or work as your own. Plagiarism also includes copying verbatim or rephrasing ideas without properly acknowledging the source by author, date, and publication medium. (p. 2)

Capella University’s Research Misconduct Policy (3.03.06) holds learners accountable for research integrity. What constitutes research misconduct is discussed in the Policy:

Research misconduct includes but is not limited to falsification, fabrication, plagiarism, misappropriation, or other practices that seriously deviate from those that are commonly accepted within the academic community for proposing, conducting, or reviewing research, or in reporting research results. (p. 1)

Learners failing to abide by these policies are subject to consequences, including but not limited to dismissal or revocation of the degree.
Statement of Original Work and Signature

I have read, understood, and abided by Capella University’s Academic Honesty Policy (3.01.01) and Research Misconduct Policy (3.03.06), including the Policy Statements, Rationale, and Definitions.

I attest that this dissertation or capstone project is my own work. Where I have used the ideas or words of others, I have paraphrased, summarized, or used direct quotes following the guidelines set forth in the APA Publication Manual.

Learner name and date
Héctor L. Feliciano-Torres – February, 2017

Mentor name and school
Dr. José M. Nieves - SOBT
APPENDIX A. DEMOGRAPHICS BREAKDOWN

Table A1. Demographics Breakdown

<table>
<thead>
<tr>
<th>Demographics</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td></td>
</tr>
<tr>
<td>Administrative</td>
<td>29%</td>
</tr>
<tr>
<td>Faculty</td>
<td>37%</td>
</tr>
<tr>
<td>Students</td>
<td>34%</td>
</tr>
<tr>
<td>Gender: Administrative, Faculty, and Students</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>48%</td>
</tr>
<tr>
<td>Male</td>
<td>52%</td>
</tr>
<tr>
<td>No data available</td>
<td>2%</td>
</tr>
<tr>
<td>Age: Students</td>
<td></td>
</tr>
<tr>
<td>21-24</td>
<td>74%</td>
</tr>
<tr>
<td>25-29</td>
<td>14%</td>
</tr>
<tr>
<td>30-34</td>
<td>4%</td>
</tr>
<tr>
<td>35-39</td>
<td>3%</td>
</tr>
<tr>
<td>40-44</td>
<td>1%</td>
</tr>
<tr>
<td>45-49</td>
<td>2%</td>
</tr>
<tr>
<td>50+</td>
<td>2%</td>
</tr>
<tr>
<td>No data available</td>
<td>1%</td>
</tr>
<tr>
<td>Education: Administrative and Faculty</td>
<td></td>
</tr>
<tr>
<td>Bachelor</td>
<td>19%</td>
</tr>
<tr>
<td>Master</td>
<td>52%</td>
</tr>
<tr>
<td>PhD/Ed</td>
<td>27%</td>
</tr>
<tr>
<td>Post Graduate</td>
<td>2%</td>
</tr>
<tr>
<td>Experience with Computers: Administrative, Faculty, and Students</td>
<td></td>
</tr>
<tr>
<td>0-5 years</td>
<td>5%</td>
</tr>
<tr>
<td>6-10 years</td>
<td>13%</td>
</tr>
<tr>
<td>11-15 years</td>
<td>20%</td>
</tr>
<tr>
<td>Greater than 15 years</td>
<td>62%</td>
</tr>
<tr>
<td>No data available</td>
<td>2%</td>
</tr>
<tr>
<td>Years Using Wireless Data Network: Administrative, Faculty, and Students</td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>5%</td>
</tr>
<tr>
<td>1-5</td>
<td>22%</td>
</tr>
<tr>
<td>Greater than 5</td>
<td>73%</td>
</tr>
<tr>
<td>No data available</td>
<td>1%</td>
</tr>
<tr>
<td>Owner of Desktop Computers: Administrative, Faculty, and Students</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>71%</td>
</tr>
<tr>
<td>No</td>
<td>29%</td>
</tr>
<tr>
<td>No data available</td>
<td>1%</td>
</tr>
<tr>
<td>Owner of Personal Laptop: Administrative, Faculty, and Students</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>87%</td>
</tr>
<tr>
<td>No</td>
<td>11%</td>
</tr>
<tr>
<td>No data available</td>
<td>2%</td>
</tr>
<tr>
<td>Personal Laptops with Wireless Capabilities: Administrative, Faculty, and Students</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>92%</td>
</tr>
<tr>
<td>No</td>
<td>6%</td>
</tr>
<tr>
<td>No data available</td>
<td>2%</td>
</tr>
</tbody>
</table>

continued
<table>
<thead>
<tr>
<th>Demographics</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner of Other Form of Devices with Wireless Data Capabilities: Administrative, Faculty, and Students:</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>92%</td>
</tr>
<tr>
<td>No</td>
<td>5%</td>
</tr>
<tr>
<td>No data available</td>
<td>3%</td>
</tr>
<tr>
<td>How Many Times do you Connect to the Wireless Network during the Working Week:</td>
<td></td>
</tr>
<tr>
<td>Administrative</td>
<td></td>
</tr>
<tr>
<td>Less than 0-30 times</td>
<td>77%</td>
</tr>
<tr>
<td>More than 31 times</td>
<td>23%</td>
</tr>
<tr>
<td>How Many Times do you Connect to the Wireless Network during the College Week: Faculty:</td>
<td></td>
</tr>
<tr>
<td>Less than 0-30 times</td>
<td>74%</td>
</tr>
<tr>
<td>More than 31 times</td>
<td>26%</td>
</tr>
<tr>
<td>How Many Times do you Connect to the Wireless Network during the College Week: Students:</td>
<td></td>
</tr>
<tr>
<td>Less than 0-30 times</td>
<td>84%</td>
</tr>
<tr>
<td>More than 31 times</td>
<td>16%</td>
</tr>
<tr>
<td>How Many Minutes Long do you Connect to the Wireless Network during the Working Week: Administrative:</td>
<td></td>
</tr>
<tr>
<td>Less than 0-60 minutes</td>
<td>58%</td>
</tr>
<tr>
<td>61-100 minutes</td>
<td>9%</td>
</tr>
<tr>
<td>More than 100 minutes</td>
<td>33%</td>
</tr>
<tr>
<td>How Many Minutes Long do you Connect to the Wireless Network during the College Week: Faculty:</td>
<td></td>
</tr>
<tr>
<td>Less than 0-60 minutes</td>
<td>51%</td>
</tr>
<tr>
<td>61-100 minutes</td>
<td>21%</td>
</tr>
<tr>
<td>More than 100 minutes</td>
<td>28%</td>
</tr>
<tr>
<td>How Many Minutes Long do you Connect to the Wireless Network during the College Week: Students:</td>
<td></td>
</tr>
<tr>
<td>Less than 0-60 minutes</td>
<td>62%</td>
</tr>
<tr>
<td>61-100 minutes</td>
<td>19%</td>
</tr>
<tr>
<td>More than 100 minutes</td>
<td>19%</td>
</tr>
</tbody>
</table>
APPENDIX B. HYPOTHESES CONCLUSIONS

<table>
<thead>
<tr>
<th>Hypotheses</th>
<th>Outcomes</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothesis 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1a: Effective policies of Compatibility (CPA) has a positive relationship on Perceived Usefulness (PU) to use wireless services.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta=.045, p=.490, Non Significance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1b: Effective policies of Compatibility (CPA) has a positive relationship on Perceived ease-of-use (PEU) to use wireless services.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta=.016, p=.837, Non Significance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1c: Effective policies of Compatibility (CPA) has a positive relationship on Behavioral Intention (BI) to use using wireless services.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta=.246, p=.001, Significance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypothesis 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2a: Effective policies of Complexity (CPL) has a negative relationship on Perceived Usefulness (PU) to use wireless services.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta=-.078, p=.080, Non Significance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2b: Effective policies of Complexity (CPL) has a negative relationship on Perceived ease-of-use (PEU) to use wireless services.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta=-.357, p=.001, Significance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2c: Effective policies of Complexity (CPL) has a negative relationship on Behavioral Intention (BI) to use wireless services.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta=-.052, p=.385, Non Significance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypothesis 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3a: Effective policies of Relative Advantages (ADV) has a positive relationship on Perceived Usefulness (PU) to use wireless services.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta=.775, p=.001, Significance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3b: Effective policies of Relative Advantages (ADV) has a positive relationship on Perceived ease-of-use (PEU) to use wireless services.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta=.434, p=.001, Significance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supported</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H3c: Effective policies of Relative Advantages (ADV) has a positive relationship on Behavioral Intention (BI) to use wireless services.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beta=.157, p=.138, Non Significance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Supported</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued
Table B1 (continued)

<table>
<thead>
<tr>
<th>Hypothesis</th>
<th>Description</th>
<th>Beta</th>
<th>p Value</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>H4a</td>
<td>Effective policies of Observability (OBS) has a positive relationship on Perceived Usefulness (PU) to use wireless services.</td>
<td>0.031</td>
<td>0.375</td>
<td>Non Significance</td>
</tr>
<tr>
<td>H4b</td>
<td>Effective policies of Observability (OBS) has a positive relationship on Perceived ease-of-use (PEU) to use wireless services.</td>
<td>-0.013</td>
<td>0.782</td>
<td>Non Significance</td>
</tr>
<tr>
<td>H4c</td>
<td>Effective policies of Observability (OBS) has a positive relationship on Behavioral Intention (BI) to use wireless services.</td>
<td>0.003</td>
<td>0.941</td>
<td>Non Significance</td>
</tr>
<tr>
<td>H5a</td>
<td>Effective policies of Trialability (TRI) has a positive relationship on Perceived Usefulness (PU) to use wireless services.</td>
<td>0.033</td>
<td>0.434</td>
<td>Non Significance</td>
</tr>
<tr>
<td>H5b</td>
<td>Effective policies of Trialability (TRI) has a positive relationship on Perceived ease-of-use (PEU) to use wireless services.</td>
<td>0.142</td>
<td>0.024</td>
<td>Significance</td>
</tr>
<tr>
<td>H5c</td>
<td>Effective policies of Trialability (TRI) has a positive relationship on Behavioral Intention (BI) to use wireless services.</td>
<td>0.102</td>
<td>0.028</td>
<td>Significance</td>
</tr>
<tr>
<td>H6a</td>
<td>Effective policies of PEU has a positive relationship on the PU of the use wireless services.</td>
<td>0.114</td>
<td>0.070</td>
<td>Non Significance</td>
</tr>
<tr>
<td>H6b</td>
<td>Effective policies of PEU has a positive relationship on Behavioral Intention (BI) of the use wireless services.</td>
<td>0.182</td>
<td>0.030</td>
<td>Significance</td>
</tr>
<tr>
<td>H7a</td>
<td>Effective policies of PU has a positive relationship on the Behavioral Intention (BI) to use the e-learning system.</td>
<td>0.222</td>
<td>0.043</td>
<td>Significance</td>
</tr>
</tbody>
</table>